Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit be0ea696 authored by Linus Torvalds's avatar Linus Torvalds
Browse files
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
  slob: fix lockup in slob_free()
  slub: use get_track()
  slub: rename calculate_min_partial() to set_min_partial()
  slub: add min_partial sysfs tunable
  slub: move min_partial to struct kmem_cache
  SLUB: Fix default slab order for big object sizes
  SLUB: Do not pass 8k objects through to the page allocator
  SLUB: Introduce and use SLUB_MAX_SIZE and SLUB_PAGE_SHIFT constants
  slob: clean up the code
  SLUB: Use ->objsize from struct kmem_cache_cpu in slab_free()
parents 4496d937 15a5b0a4
Loading
Loading
Loading
Loading
+17 −4
Original line number Diff line number Diff line
@@ -46,7 +46,6 @@ struct kmem_cache_cpu {
struct kmem_cache_node {
	spinlock_t list_lock;	/* Protect partial list and nr_partial */
	unsigned long nr_partial;
	unsigned long min_partial;
	struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
	atomic_long_t nr_slabs;
@@ -89,6 +88,7 @@ struct kmem_cache {
	void (*ctor)(void *);
	int inuse;		/* Offset to metadata */
	int align;		/* Alignment */
	unsigned long min_partial;
	const char *name;	/* Name (only for display!) */
	struct list_head list;	/* List of slab caches */
#ifdef CONFIG_SLUB_DEBUG
@@ -120,11 +120,24 @@ struct kmem_cache {

#define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)

/*
 * Maximum kmalloc object size handled by SLUB. Larger object allocations
 * are passed through to the page allocator. The page allocator "fastpath"
 * is relatively slow so we need this value sufficiently high so that
 * performance critical objects are allocated through the SLUB fastpath.
 *
 * This should be dropped to PAGE_SIZE / 2 once the page allocator
 * "fastpath" becomes competitive with the slab allocator fastpaths.
 */
#define SLUB_MAX_SIZE (2 * PAGE_SIZE)

#define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)

/*
 * We keep the general caches in an array of slab caches that are used for
 * 2^x bytes of allocations.
 */
extern struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1];
extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];

/*
 * Sorry that the following has to be that ugly but some versions of GCC
@@ -212,7 +225,7 @@ static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
static __always_inline void *kmalloc(size_t size, gfp_t flags)
{
	if (__builtin_constant_p(size)) {
		if (size > PAGE_SIZE)
		if (size > SLUB_MAX_SIZE)
			return kmalloc_large(size, flags);

		if (!(flags & SLUB_DMA)) {
@@ -234,7 +247,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
{
	if (__builtin_constant_p(size) &&
		size <= PAGE_SIZE && !(flags & SLUB_DMA)) {
		size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
			struct kmem_cache *s = kmalloc_slab(size);

		if (!s)
+27 −16
Original line number Diff line number Diff line
@@ -126,9 +126,9 @@ static LIST_HEAD(free_slob_medium);
static LIST_HEAD(free_slob_large);

/*
 * slob_page: True for all slob pages (false for bigblock pages)
 * is_slob_page: True for all slob pages (false for bigblock pages)
 */
static inline int slob_page(struct slob_page *sp)
static inline int is_slob_page(struct slob_page *sp)
{
	return PageSlobPage((struct page *)sp);
}
@@ -143,6 +143,11 @@ static inline void clear_slob_page(struct slob_page *sp)
	__ClearPageSlobPage((struct page *)sp);
}

static inline struct slob_page *slob_page(const void *addr)
{
	return (struct slob_page *)virt_to_page(addr);
}

/*
 * slob_page_free: true for pages on free_slob_pages list.
 */
@@ -230,7 +235,7 @@ static int slob_last(slob_t *s)
	return !((unsigned long)slob_next(s) & ~PAGE_MASK);
}

static void *slob_new_page(gfp_t gfp, int order, int node)
static void *slob_new_pages(gfp_t gfp, int order, int node)
{
	void *page;

@@ -247,12 +252,17 @@ static void *slob_new_page(gfp_t gfp, int order, int node)
	return page_address(page);
}

static void slob_free_pages(void *b, int order)
{
	free_pages((unsigned long)b, order);
}

/*
 * Allocate a slob block within a given slob_page sp.
 */
static void *slob_page_alloc(struct slob_page *sp, size_t size, int align)
{
	slob_t *prev, *cur, *aligned = 0;
	slob_t *prev, *cur, *aligned = NULL;
	int delta = 0, units = SLOB_UNITS(size);

	for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) {
@@ -349,10 +359,10 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)

	/* Not enough space: must allocate a new page */
	if (!b) {
		b = slob_new_page(gfp & ~__GFP_ZERO, 0, node);
		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
		if (!b)
			return 0;
		sp = (struct slob_page *)virt_to_page(b);
			return NULL;
		sp = slob_page(b);
		set_slob_page(sp);

		spin_lock_irqsave(&slob_lock, flags);
@@ -384,7 +394,7 @@ static void slob_free(void *block, int size)
		return;
	BUG_ON(!size);

	sp = (struct slob_page *)virt_to_page(block);
	sp = slob_page(block);
	units = SLOB_UNITS(size);

	spin_lock_irqsave(&slob_lock, flags);
@@ -393,10 +403,11 @@ static void slob_free(void *block, int size)
		/* Go directly to page allocator. Do not pass slob allocator */
		if (slob_page_free(sp))
			clear_slob_page_free(sp);
		spin_unlock_irqrestore(&slob_lock, flags);
		clear_slob_page(sp);
		free_slob_page(sp);
		free_page((unsigned long)b);
		goto out;
		return;
	}

	if (!slob_page_free(sp)) {
@@ -476,7 +487,7 @@ void *__kmalloc_node(size_t size, gfp_t gfp, int node)
	} else {
		void *ret;

		ret = slob_new_page(gfp | __GFP_COMP, get_order(size), node);
		ret = slob_new_pages(gfp | __GFP_COMP, get_order(size), node);
		if (ret) {
			struct page *page;
			page = virt_to_page(ret);
@@ -494,8 +505,8 @@ void kfree(const void *block)
	if (unlikely(ZERO_OR_NULL_PTR(block)))
		return;

	sp = (struct slob_page *)virt_to_page(block);
	if (slob_page(sp)) {
	sp = slob_page(block);
	if (is_slob_page(sp)) {
		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
		unsigned int *m = (unsigned int *)(block - align);
		slob_free(m, *m + align);
@@ -513,8 +524,8 @@ size_t ksize(const void *block)
	if (unlikely(block == ZERO_SIZE_PTR))
		return 0;

	sp = (struct slob_page *)virt_to_page(block);
	if (slob_page(sp)) {
	sp = slob_page(block);
	if (is_slob_page(sp)) {
		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
		unsigned int *m = (unsigned int *)(block - align);
		return SLOB_UNITS(*m) * SLOB_UNIT;
@@ -573,7 +584,7 @@ void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
	if (c->size < PAGE_SIZE)
		b = slob_alloc(c->size, flags, c->align, node);
	else
		b = slob_new_page(flags, get_order(c->size), node);
		b = slob_new_pages(flags, get_order(c->size), node);

	if (c->ctor)
		c->ctor(b);
@@ -587,7 +598,7 @@ static void __kmem_cache_free(void *b, int size)
	if (size < PAGE_SIZE)
		slob_free(b, size);
	else
		free_pages((unsigned long)b, get_order(size));
		slob_free_pages(b, get_order(size));
}

static void kmem_rcu_free(struct rcu_head *head)
+52 −30
Original line number Diff line number Diff line
@@ -374,14 +374,8 @@ static struct track *get_track(struct kmem_cache *s, void *object,
static void set_track(struct kmem_cache *s, void *object,
			enum track_item alloc, unsigned long addr)
{
	struct track *p;
	struct track *p = get_track(s, object, alloc);

	if (s->offset)
		p = object + s->offset + sizeof(void *);
	else
		p = object + s->inuse;

	p += alloc;
	if (addr) {
		p->addr = addr;
		p->cpu = smp_processor_id();
@@ -1335,7 +1329,7 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
		n = get_node(s, zone_to_nid(zone));

		if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
				n->nr_partial > n->min_partial) {
				n->nr_partial > s->min_partial) {
			page = get_partial_node(n);
			if (page)
				return page;
@@ -1387,7 +1381,7 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
		slab_unlock(page);
	} else {
		stat(c, DEACTIVATE_EMPTY);
		if (n->nr_partial < n->min_partial) {
		if (n->nr_partial < s->min_partial) {
			/*
			 * Adding an empty slab to the partial slabs in order
			 * to avoid page allocator overhead. This slab needs
@@ -1724,7 +1718,7 @@ static __always_inline void slab_free(struct kmem_cache *s,
	c = get_cpu_slab(s, smp_processor_id());
	debug_check_no_locks_freed(object, c->objsize);
	if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(object, s->objsize);
		debug_check_no_obj_freed(object, c->objsize);
	if (likely(page == c->page && c->node >= 0)) {
		object[c->offset] = c->freelist;
		c->freelist = object;
@@ -1844,6 +1838,7 @@ static inline int calculate_order(int size)
	int order;
	int min_objects;
	int fraction;
	int max_objects;

	/*
	 * Attempt to find best configuration for a slab. This
@@ -1856,6 +1851,9 @@ static inline int calculate_order(int size)
	min_objects = slub_min_objects;
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
	max_objects = (PAGE_SIZE << slub_max_order)/size;
	min_objects = min(min_objects, max_objects);

	while (min_objects > 1) {
		fraction = 16;
		while (fraction >= 4) {
@@ -1865,7 +1863,7 @@ static inline int calculate_order(int size)
				return order;
			fraction /= 2;
		}
		min_objects /= 2;
		min_objects --;
	}

	/*
@@ -1928,17 +1926,6 @@ static void
init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
{
	n->nr_partial = 0;

	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
	n->min_partial = ilog2(s->size);
	if (n->min_partial < MIN_PARTIAL)
		n->min_partial = MIN_PARTIAL;
	else if (n->min_partial > MAX_PARTIAL)
		n->min_partial = MAX_PARTIAL;

	spin_lock_init(&n->list_lock);
	INIT_LIST_HEAD(&n->partial);
#ifdef CONFIG_SLUB_DEBUG
@@ -2181,6 +2168,15 @@ static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
}
#endif

static void set_min_partial(struct kmem_cache *s, unsigned long min)
{
	if (min < MIN_PARTIAL)
		min = MIN_PARTIAL;
	else if (min > MAX_PARTIAL)
		min = MAX_PARTIAL;
	s->min_partial = min;
}

/*
 * calculate_sizes() determines the order and the distribution of data within
 * a slab object.
@@ -2319,6 +2315,11 @@ static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
	if (!calculate_sizes(s, -1))
		goto error;

	/*
	 * The larger the object size is, the more pages we want on the partial
	 * list to avoid pounding the page allocator excessively.
	 */
	set_min_partial(s, ilog2(s->size));
	s->refcount = 1;
#ifdef CONFIG_NUMA
	s->remote_node_defrag_ratio = 1000;
@@ -2475,7 +2476,7 @@ EXPORT_SYMBOL(kmem_cache_destroy);
 *		Kmalloc subsystem
 *******************************************************************/

struct kmem_cache kmalloc_caches[PAGE_SHIFT + 1] __cacheline_aligned;
struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT] __cacheline_aligned;
EXPORT_SYMBOL(kmalloc_caches);

static int __init setup_slub_min_order(char *str)
@@ -2537,7 +2538,7 @@ static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
}

#ifdef CONFIG_ZONE_DMA
static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT + 1];
static struct kmem_cache *kmalloc_caches_dma[SLUB_PAGE_SHIFT];

static void sysfs_add_func(struct work_struct *w)
{
@@ -2658,7 +2659,7 @@ void *__kmalloc(size_t size, gfp_t flags)
{
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE))
	if (unlikely(size > SLUB_MAX_SIZE))
		return kmalloc_large(size, flags);

	s = get_slab(size, flags);
@@ -2686,7 +2687,7 @@ void *__kmalloc_node(size_t size, gfp_t flags, int node)
{
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE))
	if (unlikely(size > SLUB_MAX_SIZE))
		return kmalloc_large_node(size, flags, node);

	s = get_slab(size, flags);
@@ -2986,7 +2987,7 @@ void __init kmem_cache_init(void)
		caches++;
	}

	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++) {
	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
		create_kmalloc_cache(&kmalloc_caches[i],
			"kmalloc", 1 << i, GFP_KERNEL);
		caches++;
@@ -3023,7 +3024,7 @@ void __init kmem_cache_init(void)
	slab_state = UP;

	/* Provide the correct kmalloc names now that the caches are up */
	for (i = KMALLOC_SHIFT_LOW; i <= PAGE_SHIFT; i++)
	for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++)
		kmalloc_caches[i]. name =
			kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);

@@ -3223,7 +3224,7 @@ void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
{
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE))
	if (unlikely(size > SLUB_MAX_SIZE))
		return kmalloc_large(size, gfpflags);

	s = get_slab(size, gfpflags);
@@ -3239,7 +3240,7 @@ void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
{
	struct kmem_cache *s;

	if (unlikely(size > PAGE_SIZE))
	if (unlikely(size > SLUB_MAX_SIZE))
		return kmalloc_large_node(size, gfpflags, node);

	s = get_slab(size, gfpflags);
@@ -3836,6 +3837,26 @@ static ssize_t order_show(struct kmem_cache *s, char *buf)
}
SLAB_ATTR(order);

static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%lu\n", s->min_partial);
}

static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
				 size_t length)
{
	unsigned long min;
	int err;

	err = strict_strtoul(buf, 10, &min);
	if (err)
		return err;

	set_min_partial(s, min);
	return length;
}
SLAB_ATTR(min_partial);

static ssize_t ctor_show(struct kmem_cache *s, char *buf)
{
	if (s->ctor) {
@@ -4151,6 +4172,7 @@ static struct attribute *slab_attrs[] = {
	&object_size_attr.attr,
	&objs_per_slab_attr.attr,
	&order_attr.attr,
	&min_partial_attr.attr,
	&objects_attr.attr,
	&objects_partial_attr.attr,
	&total_objects_attr.attr,