This project is mirrored from https://github.com/exynos8895/android_kernel_samsung_universal8895.git.
Pull mirroring updated .
- Feb 19, 2021
-
-
Romain Hunault authored
-
/e/ robot authored
-
- Apr 15, 2020
-
-
Alexandre Roux authored
Enable selinux See merge request !1
-
- Apr 03, 2020
-
-
Alexandre Roux authored
-
- Mar 30, 2020
-
-
Alexandre Roux authored
-
- Aug 30, 2019
-
-
Michael Benedict authored
Signed-off-by:
Michael Benedict <michaelbt@live.com>
-
Michael Benedict authored
Signed-off-by:
Michael Benedict <michaelbt@live.com>
-
Sergey Senozhatsky authored
Patch series "zsmalloc/zram: drop zram's max_zpage_size", v3. ZRAM's max_zpage_size is a bad thing. It forces zsmalloc to store normal objects as huge ones, which results in bigger zsmalloc memory usage. Drop it and use actual zsmalloc huge-class value when decide if the object is huge or not. This patch (of 2): Not every object can be share its zspage with other objects, e.g. when the object is as big as zspage or nearly as big a zspage. For such objects zsmalloc has a so called huge class - every object which belongs to huge class consumes the entire zspage (which consists of a physical page). On x86_64, PAGE_SHIFT 12 box, the first non-huge class size is 3264, so starting down from size 3264, objects can share page(-s) and thus minimize memory wastage. ZRAM, however, has its own statically defined watermark for huge objects, namely "3 * PAGE_SIZE / 4 = 3072", and forcibly stores every object larger than this watermark (3072) as a PAGE_SIZE object, in other words, to a huge class, while zsmalloc can keep some of those objects in non-huge classes. This results in increased memory consumption. zsmalloc knows better if the object is huge or not. Introduce zs_huge_class_size() function which tells if the given object can be stored in one of non-huge classes or not. This will let us to drop ZRAM's huge object watermark and fully rely on zsmalloc when we decide if the object is huge. [sergey.senozhatsky.work@gmail.com: add pool param to zs_huge_class_size()] Link: http://lkml.kernel.org/r/20180314081833.1096-2-sergey.senozhatsky@gmail.com Link: http://lkml.kernel.org/r/20180306070639.7389-2-sergey.senozhatsky@gmail.com Signed-off-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by:
Minchan Kim <minchan@kernel.org> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 010b495e2fa32353d0ef6aa70a8169e5ef617a15) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 113183619 Change-Id: Ic35f8c1ec75f0b78bf2d83729b6aedd2999f25c8
-
Minchan Kim authored
commit fef912bf860e upstream. commit 98af4d4df889 upstream. I got a report from Howard Chen that he saw zram and sysfs race(ie, zram block device file is created but sysfs for it isn't yet) when he tried to create new zram devices via hotadd knob. v4.20 kernel fixes it by [1, 2] but it's too large size to merge into -stable so this patch fixes the problem by registering defualt group by Greg KH's approach[3]. This patch should be applied to every stable tree [3.16+] currently existing from kernel.org because the problem was introduced at 2.6.37 by [4]. [1] fef912bf860e, block: genhd: add 'groups' argument to device_add_disk [2] 98af4d4df889, zram: register default groups with device_add_disk() [3] http://kroah.com/log/blog/2013/06/26/how-to-create-a-sysfs-file-correctly/ [4] 33863c21, Staging: zram: Replace ioctls with sysfs interface Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Hannes Reinecke <hare@suse.com> Tested-by:
Howard Chen <howardsoc@google.com> Signed-off-by:
Minchan Kim <minchan@kernel.org> Signed-off-by:
Sasha Levin <sashal@kernel.org>
-
Peter Kalauskas authored
This bug was introduced when two patches were applied out of order. * zram: drop max_zpage_size and use zs_huge_class_size() * zram: mark incompressible page as ZRAM_HUGE Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 119260394 Change-Id: I437d35c8d23c15237ad9c2d5bd7f99d7bff42872
-
Sergey Senozhatsky authored
Remove ZRAM's enforced "huge object" value and use zsmalloc huge-class watermark instead, which makes more sense. TEST - I used a 1G zram device, LZO compression back-end, original data set size was 444MB. Looking at zsmalloc classes stats the test ended up to be pretty fair. BASE ZRAM/ZSMALLOC ===================== zram mm_stat 498978816 191482495 199831552 0 199831552 15634 0 zsmalloc classes class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable ... 151 2448 0 0 1240 1240 744 3 0 168 2720 0 0 4200 4200 2800 2 0 190 3072 0 0 10100 10100 7575 3 0 202 3264 0 0 380 380 304 4 0 254 4096 0 0 10620 10620 10620 1 0 Total 7 46 106982 106187 48787 0 PATCHED ZRAM/ZSMALLOC ===================== zram mm_stat 498978816 182579184 194248704 0 194248704 15628 0 zsmalloc classes class size almost_full almost_empty obj_allocated obj_used pages_used pages_per_zspage freeable ... 151 2448 0 0 1240 1240 744 3 0 168 2720 0 0 4200 4200 2800 2 0 190 3072 0 0 10100 10100 7575 3 0 202 3264 0 0 7180 7180 5744 4 0 254 4096 0 0 3820 3820 3820 1 0 Total 8 45 106959 106193 47424 0 As we can see, we reduced the number of objects stored in class-4096, because a huge number of objects which we previously forcibly stored in class-4096 now stored in non-huge class-3264. This results in lower memory consumption: - zsmalloc now uses 47424 physical pages, which is less than 48787 pages zsmalloc used before. - objects that we store in class-3264 share zspages. That's why overall the number of pages that both class-4096 and class-3264 consumed went down from 10924 to 9564. [sergey.senozhatsky.work@gmail.com: add pool param to zs_huge_class_size()] Link: http://lkml.kernel.org/r/20180314081833.1096-3-sergey.senozhatsky@gmail.com Link: http://lkml.kernel.org/r/20180306070639.7389-3-sergey.senozhatsky@gmail.com Signed-off-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by:
Minchan Kim <minchan@kernel.org> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 60f5921a9a4f126e081318bd6bb2bc2798b7bba8) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 113183619 Change-Id: I1d3ede25543e99a24802ad03f68995f33aaf79b5
-
Peter Kalauskas authored
The call to strlcpy in backing_dev_store is incorrect. It should take the size of the destination buffer instead of the size of the source buffer. Additionally, ignore the newline character (\n) when reading the new file_name buffer. This makes it possible to set the backing_dev as follows: echo /dev/sdX > /sys/block/zram0/backing_dev The reason it worked before was the fact that strlcpy() copies 'len - 1' bytes, which is strlen(buf) - 1 in our case, so it accidentally didn't copy the trailing new line symbol. Which also means that "echo -n /dev/sdX" most likely was broken. Signed-off-by:
Peter Kalauskas <peskal@google.com> Link: http://lkml.kernel.org/r/20180813061623.GC64836@rodete-desktop-imager.corp.google.com Acked-by:
Minchan Kim <minchan@kernel.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: <stable@vger.kernel.org> [4.14+] Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit c8bd134a4bddafe5917d163eea73873932c15e83) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I0a0d602b61169ae9adc8f89914ce4e30cc10e191
-
Minchan Kim authored
zRam as swap is useful for small memory device. However, swap means those pages on zram are mostly cold pages due to VM's LRU algorithm. Especially, once init data for application are touched for launching, they tend to be not accessed any more and finally swapped out. zRAM can store such cold pages as compressed form but it's pointless to keep in memory. Better idea is app developers free them directly rather than remaining them on heap. This patch tell us last access time of each block of zram via "cat /sys/kernel/debug/zram/zram0/block_state". The output is as follows, 300 75.033841 .wh 301 63.806904 s.. 302 63.806919 ..h First column is zram's block index and 3rh one represents symbol (s: same page w: written page to backing store h: huge page) of the block state. Second column represents usec time unit of the block was last accessed. So above example means the 300th block is accessed at 75.033851 second and it was huge so it was written to the backing store. Admin can leverage this information to catch cold|incompressible pages of process with *pagemap* once part of heaps are swapped out. I used the feature a few years ago to find memory hoggers in userspace to notify them what memory they have wasted without touch for a long time. With it, they could reduce unnecessary memory space. However, at that time, I hacked up zram for the feature but now I need the feature again so I decided it would be better to upstream rather than keeping it alone. I hope I submit the userspace tool to use the feature soon. [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: use ktime_get_boottime() instead of sched_clock()] Link: http://lkml.kernel.org/r/20180420063525.GA253739@rodete-desktop-imager.corp.google.com [akpm@linux-foundation.org: documentation tweak] [akpm@linux-foundation.org: fix i386 printk warning] [minchan@kernel.org: fix compile warning] Link: http://lkml.kernel.org/r/20180508104849.GA8209@rodete-desktop-imager.corp.google.com [rdunlap@infradead.org: fix printk formats] Link: http://lkml.kernel.org/r/3652ccb1-96ef-0b0b-05d1-f661d7733dcc@infradead.org Link: http://lkml.kernel.org/r/20180416090946.63057-5-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Signed-off-by:
Randy Dunlap <rdunlap@infradead.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by:
Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit c0265342bff4fcaa2cdf13f4596244c18d4a7ae5) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I932447d33d1b6af78ae6463b494006c725e5e38c
-
Minchan Kim authored
zRam as swap is useful for small memory device. However, swap means those pages on zram are mostly cold pages due to VM's LRU algorithm. Especially, once init data for application are touched for launching, they tend to be not accessed any more and finally swapped out. zRAM can store such cold pages as compressed form but it's pointless to keep in memory. Better idea is app developers free them directly rather than remaining them on heap. This patch records last access time of each block of zram so that With upcoming zram memory tracking, it could help userspace developers to reduce memory footprint. Link: http://lkml.kernel.org/r/20180416090946.63057-4-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit d7eac6b6e1838ef1a1400df4ec55daa34bbc855e) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I5b217d3cd4da57e548196658e0824d65a0cad631
-
Minchan Kim authored
Mark incompressible pages so that we could investigate who is the owner of the incompressible pages once the page is swapped out via using upcoming zram memory tracker feature. With it, we could prevent such pages to be swapped out by using mlock. Otherwise we might remove them. This patch exposes new stat for huge pages via mm_stat. Link: http://lkml.kernel.org/r/20180416090946.63057-3-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 89e85bce4b02edb7408aebf69d5d1a6692a05f4f) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: If1b7b2d6ea6672a575ffc3d70c2c8b58ecafd0d7
-
Minchan Kim authored
Patch series "zram memory tracking", v5. zRam as swap is useful for small memory device. However, swap means those pages on zram are mostly cold pages due to VM's LRU algorithm. Especially, once init data for application are touched for launching, they tend to be not accessed any more and finally swapped out. zRAM can store such cold pages as compressed form but it's pointless to keep in memory. As well, it's pointless to store incompressible pages to zram so better idea is app developers manages them directly like free or mlock rather than remaining them on heap. This patch provides a debugfs /sys/kernel/debug/zram/zram0/block_state to represent each block's state so admin can investigate what memory is cold|incompressible|same page with using pagemap once the pages are swapped out. The output is as follows: 300 75.033841 .wh 301 63.806904 s.. 302 63.806919 ..h First column is zram's block index and 3rh one represents symbol (s: same page w: written page to backing store h: huge page) of the block state. Second column represents usec time unit of the block was last accessed. So above example means the 300th block is accessed at 75.033851 second and it was huge so it was written to the backing store. This patch (of 4): ZRAM_ACCESS is used for locking a slot of zram so correct the name. It is also not a common flag to indicate status of the block so move the declare position on top of the flag. Lastly, let's move the function to the top of source code to be able to use it easily without forward declaration. Link: http://lkml.kernel.org/r/20180416090946.63057-2-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit c4d6c4cc7bfd5ecc18548420b7fb9440cf8416ae) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I037a22a739fb4005918eb668d10e8be354a1524f
-
Bart Van Assche authored
Remove the disk, partition and bdi sysfs attributes before cleaning up the request queue associated with the disk. Signed-off-by:
Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by:
Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by:
Joseph Qi <joseph.qi@linux.alibaba.com> Reviewed-by:
Ming Lei <ming.lei@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Nitin Gupta <ngupta@vflare.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by:
Jens Axboe <axboe@kernel.dk> (cherry picked from commit 392db38058eb47250a9d0cc737af37e78a7e443d) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ifbcb6e03fee764054dc9a371c00b95547e4de745
-
Colin Ian King authored
zram_page_end_io() is local to the source and does not need to be in global scope, so make it static. Cleans up sparse warning: symbol 'zram_page_end_io' was not declared. Should it be static? Link: http://lkml.kernel.org/r/20171016173336.20320-1-colin.king@canonical.com Signed-off-by:
Colin Ian King <colin.king@canonical.com> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 384bc41fc064bd8b12b7081aa3e81d26f3407045) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ie0f250e580bc1dd16e963b5dbe5bdc429fb4cd65
-
Minchan Kim authored
With fast swap storage, the platform wants to use swap more aggressively and swap-in is crucial to application latency. The rw_page() based synchronous devices like zram, pmem and btt are such fast storage. When I profile swapin performance with zram lz4 decompress test, S/W overhead is more than 70%. Maybe, it would be bigger in nvdimm. This patchset reduces swap-in latency by skipping swapcache if the swap device is a synchronous device like a rw_page() based device. It enhances by 45% my swapin test (5G sequential swapin, no readahead) from 2.41sec to 1.64sec. This patch (of 4): Commit 19b7ccf8651d ("block: get rid of blk_integrity_revalidate()") fixed a weird thing (i.e., reset BDI_CAP_STABLE_WRITES flag unconditionally whenever revalidat_disk is called) so zram doesn't need to reset the flag any more when revalidating the bdev. Instead, set the flag just once when the zram device is created. It shouldn't change any behavior. Link: http://lkml.kernel.org/r/1505886205-9671-2-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Hugh Dickins <hughd@google.com> Cc: Huang Ying <ying.huang@intel.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit e447a0151f7ce8dd884fea48279274bd64434c29) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: If41edc4871ed470f050bbf4d51a24fe5c0e18738
-
Minchan Kim authored
In testing I found handle passed to zs_map_object in __zram_bvec_read is NULL so eh kernel goes oops in pin_object(). The reason is there is no routine to check the slot's freeing after getting the slot's lock. This patch fixes it. [minchan@kernel.org: v2] Link: http://lkml.kernel.org/r/1505887347-10881-1-git-send-email-minchan@kernel.org Link: http://lkml.kernel.org/r/1505788488-26723-1-git-send-email-minchan@kernel.org Fixes: 1f7319c74275 ("zram: partial IO refactoring") Signed-off-by:
Minchan Kim <minchan@kernel.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: <stable@vger.kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit ae94264ed4b0cf7cd887947650db4c69acb62072) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I0ff4a8c2f1fcd0ee39511985809b58bf94b2d44c
-
Minchan Kim authored
This patch adds document and kconfig for using of writeback feature. Link: http://lkml.kernel.org/r/1498459987-24562-10-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Cc: Juneho Choi <juno.choi@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 5a47074f0279421778f97b1b1e75686696a5f42a) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I9ec2230739a6468a4481a90a9c9f966badf9ac48
-
Minchan Kim authored
This patch enables read IO from backing device. For the feature, it implements two IO read functions to transfer data from backing storage. One is asynchronous IO function and other is synchronous one. A reason I need synchrnous IO is due to partial write which need to complete read IO before the overwriting partial data. We can make the partial IO's case asynchronous, too but at the moment, I don't feel adding more complexity to support such rare use cases so want to go with simple. [xieyisheng1@huawei.com: read_from_bdev_async(): return 1 to avoid call page_endio() in zram_rw_page()] Link: http://lkml.kernel.org/r/1502707447-6944-1-git-send-email-xieyisheng1@huawei.com Link: http://lkml.kernel.org/r/1498459987-24562-9-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Signed-off-by:
Yisheng Xie <xieyisheng1@huawei.com> Cc: Juneho Choi <juno.choi@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 8e654f8fbff52ac483fb69957222853d7e2fc588) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ia82f5fc4697aacc723a336e4dad4e7bc56a1bdb9
-
Minchan Kim authored
This patch enables write IO to transfer data to backing device. For that, it implements write_to_bdev function which creates new bio and chaining with parent bio to make the parent bio asynchrnous. For rw_page which don't have parent bio, it submit owned bio and handle IO completion by zram_page_end_io. Also, this patch defines new flag ZRAM_WB to mark written page for later read IO. [xieyisheng1@huawei.com: fix typo in comment] Link: http://lkml.kernel.org/r/1502707447-6944-2-git-send-email-xieyisheng1@huawei.com Link: http://lkml.kernel.org/r/1498459987-24562-8-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Signed-off-by:
Yisheng Xie <xieyisheng1@huawei.com> Cc: Juneho Choi <juno.choi@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit db8ffbd4e7634cc537c8d32e73e7ce0f06248645) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ie675efd6c3ec04a151443f1cd0bf798d4847710f
-
Minchan Kim authored
For upcoming asynchronous IO like writeback, zram_rw_page should be aware of that whether requested IO was completed or submitted successfully, otherwise error. For the goal, zram_bvec_rw has three return values. -errno: returns error number 0: IO request is done synchronously 1: IO request is issued successfully. Link: http://lkml.kernel.org/r/1498459987-24562-7-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Cc: Juneho Choi <juno.choi@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit ae85a8075c5b025b9d503554ddc480a346a24536) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Id6e764b3eacfebdca2f46050648a49fc5f276b2c
-
Minchan Kim authored
With backing device, zram needs management of free space of backing device. This patch adds bitmap logic to manage free space which is very naive. However, it would be simple enough as considering uncompressible pages's frequenty in zram. Link: http://lkml.kernel.org/r/1498459987-24562-6-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Cc: Juneho Choi <juno.choi@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 1363d4662a0d28dfdb81ef426c88c9a8dbf7c338) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I37dc98b40bfddceb9eb6d989ca30683dbf89210c
-
Minchan Kim authored
For writeback feature, user should set up backing device before the zram working. This patch enables the interface via /sys/block/zramX/backing_dev. Currently, it supports block device only but it could be enhanced for file as well. Link: http://lkml.kernel.org/r/1498459987-24562-5-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Cc: Juneho Choi <juno.choi@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 013bf95a83ec760a2afc37fabd6bf13a9cdae205) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I4bbf12ed7496d476bddd574e756bac5c8a838089
-
Minchan Kim authored
zram_decompress_page naming is not proper because it doesn't decompress if page was dedup hit or stored with compression. Use more abstract term and consistent with write path function __zram_bvec_write. Link: http://lkml.kernel.org/r/1498459987-24562-4-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Cc: Juneho Choi <juno.choi@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 693dc1ce25b8c8fa33f930d47cd8f926eeb90812) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ia7c948f4b78601458b7ebc23ab345d4bc0a8d4a8
-
Minchan Kim authored
zram_compress does several things, compress, entry alloc and check limitation. I did for just readbility but it hurts modulization.:( So this patch removes zram_compress functions and inline it in __zram_bvec_write for upcoming patches. Link: http://lkml.kernel.org/r/1498459987-24562-3-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Cc: Juneho Choi <juno.choi@lge.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 97ec7c8bd5d029b2c3e40355c1204197094e9ba1) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ibb37d77168edd0b01d0b9820e431c73cc3c2ff20
-
Minchan Kim authored
Patch series "writeback incompressible pages to storage", v1. zRam is useful for memory saving with compressible pages but sometime, workload can be changed and system has lots of incompressible pages which is very harmful for zram. This patch supports writeback feature of zram so admin can set up a block device and with it, zram can save the memory via writing out the incompressile pages once it found it's incompressible pages (1/4 comp ratio) instead of keeping the page in memory. [1-3] is just clean up and [4-8] is step by step feature enablement. [4-8] is logically not bisectable(ie, logical unit separation) although I tried to compiled out without breaking but I think it would be better to review. This patch (of 9): __zram_bvec_write has some of duplicated logic for zram meta data handling of same_page|compressed_page. This patch aims to clean it up without behavior change. [xieyisheng1@huawei.com: fix compr_data_size stat] Link: http://lkml.kernel.org/r/1502707447-6944-1-git-send-email-xieyisheng1@huawei.com Link: http://lkml.kernel.org/r/1496019048-27016-1-git-send-email-minchan@kernel.org Link: http://lkml.kernel.org/r/1498459987-24562-2-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Signed-off-by:
Yisheng Xie <xieyisheng1@huawei.com> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Juneho Choi <juno.choi@lge.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 4ebbe7f7fc99260afd51759e35dbfdd6010dc697) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I3fa150c869a66ff289712b956924ecb361864a2e
-
Sergey Senozhatsky authored
Add ZSTD to the list of supported compression algorithms. ZRAM fio perf test: LZO DEFLATE ZSTD WRITE: (2180MB/s) (77.2MB/s) (1429MB/s) WRITE: (1617MB/s) (77.7MB/s) (1202MB/s) READ: (426MB/s) (595MB/s) (1181MB/s) READ: (422MB/s) (572MB/s) (1020MB/s) READ: (318MB/s) (67.8MB/s) (563MB/s) WRITE: (318MB/s) (67.9MB/s) (564MB/s) READ: (336MB/s) (68.3MB/s) (583MB/s) WRITE: (335MB/s) (68.2MB/s) (582MB/s) WRITE: (3441MB/s) (152MB/s) (2141MB/s) WRITE: (2507MB/s) (147MB/s) (1888MB/s) READ: (801MB/s) (1146MB/s) (1890MB/s) READ: (767MB/s) (1096MB/s) (2073MB/s) READ: (621MB/s) (126MB/s) (1009MB/s) WRITE: (621MB/s) (126MB/s) (1009MB/s) READ: (656MB/s) (125MB/s) (1075MB/s) WRITE: (657MB/s) (126MB/s) (1077MB/s) WRITE: (4772MB/s) (225MB/s) (3394MB/s) WRITE: (3905MB/s) (211MB/s) (2939MB/s) READ: (1216MB/s) (1608MB/s) (3218MB/s) READ: (1159MB/s) (1431MB/s) (2981MB/s) READ: (906MB/s) (156MB/s) (1457MB/s) WRITE: (907MB/s) (156MB/s) (1458MB/s) READ: (953MB/s) (158MB/s) (1595MB/s) WRITE: (952MB/s) (157MB/s) (1593MB/s) WRITE: (6036MB/s) (265MB/s) (4469MB/s) WRITE: (5059MB/s) (263MB/s) (3951MB/s) READ: (1618MB/s) (2066MB/s) (4276MB/s) READ: (1573MB/s) (1942MB/s) (3830MB/s) READ: (1202MB/s) (227MB/s) (1971MB/s) WRITE: (1200MB/s) (227MB/s) (1968MB/s) READ: (1265MB/s) (226MB/s) (2116MB/s) WRITE: (1264MB/s) (226MB/s) (2114MB/s) WRITE: (5339MB/s) (233MB/s) (3781MB/s) WRITE: (4298MB/s) (234MB/s) (3276MB/s) READ: (1626MB/s) (2048MB/s) (4081MB/s) READ: (1567MB/s) (1929MB/s) (3758MB/s) READ: (1174MB/s) (205MB/s) (1747MB/s) WRITE: (1173MB/s) (204MB/s) (1746MB/s) READ: (1214MB/s) (208MB/s) (1890MB/s) WRITE: (1215MB/s) (208MB/s) (1892MB/s) WRITE: (5666MB/s) (270MB/s) (4338MB/s) WRITE: (4828MB/s) (267MB/s) (3772MB/s) READ: (1803MB/s) (2058MB/s) (4946MB/s) READ: (1805MB/s) (2156MB/s) (4711MB/s) READ: (1334MB/s) (235MB/s) (2135MB/s) WRITE: (1335MB/s) (235MB/s) (2137MB/s) READ: (1364MB/s) (236MB/s) (2268MB/s) WRITE: (1365MB/s) (237MB/s) (2270MB/s) WRITE: (5474MB/s) (270MB/s) (4300MB/s) WRITE: (4666MB/s) (266MB/s) (3817MB/s) READ: (2022MB/s) (2319MB/s) (5472MB/s) READ: (1924MB/s) (2260MB/s) (5031MB/s) READ: (1369MB/s) (242MB/s) (2153MB/s) WRITE: (1370MB/s) (242MB/s) (2155MB/s) READ: (1499MB/s) (246MB/s) (2310MB/s) WRITE: (1497MB/s) (246MB/s) (2307MB/s) WRITE: (5558MB/s) (273MB/s) (4439MB/s) WRITE: (4763MB/s) (271MB/s) (3918MB/s) READ: (2201MB/s) (2599MB/s) (6062MB/s) READ: (2105MB/s) (2463MB/s) (5413MB/s) READ: (1490MB/s) (252MB/s) (2238MB/s) WRITE: (1488MB/s) (252MB/s) (2236MB/s) READ: (1566MB/s) (254MB/s) (2434MB/s) WRITE: (1568MB/s) (254MB/s) (2437MB/s) WRITE: (5120MB/s) (264MB/s) (4035MB/s) WRITE: (4531MB/s) (267MB/s) (3740MB/s) READ: (1940MB/s) (2258MB/s) (4986MB/s) READ: (2024MB/s) (2387MB/s) (4871MB/s) READ: (1343MB/s) (246MB/s) (2038MB/s) WRITE: (1342MB/s) (246MB/s) (2037MB/s) READ: (1553MB/s) (238MB/s) (2243MB/s) WRITE: (1552MB/s) (238MB/s) (2242MB/s) WRITE: (5345MB/s) (271MB/s) (3988MB/s) WRITE: (4750MB/s) (254MB/s) (3668MB/s) READ: (1876MB/s) (2363MB/s) (5150MB/s) READ: (1990MB/s) (2256MB/s) (5080MB/s) READ: (1355MB/s) (250MB/s) (2019MB/s) WRITE: (1356MB/s) (251MB/s) (2020MB/s) READ: (1490MB/s) (252MB/s) (2202MB/s) WRITE: (1488MB/s) (252MB/s) (2199MB/s) jobs1 perfstat instructions 52,065,555,710 ( 0.79) 855,731,114,587 ( 2.64) 54,280,709,944 ( 1.40) branches 14,020,427,116 ( 725.847) 101,733,449,582 (1074.521) 11,170,591,067 ( 992.869) branch-misses 22,626,174 ( 0.16%) 274,197,885 ( 0.27%) 25,915,805 ( 0.23%) jobs2 perfstat instructions 103,633,110,402 ( 0.75) 1,710,822,100,914 ( 2.59) 107,879,874,104 ( 1.28) branches 27,931,237,282 ( 679.203) 203,298,267,479 (1037.326) 22,185,350,842 ( 884.427) branch-misses 46,103,811 ( 0.17%) 533,747,204 ( 0.26%) 49,682,483 ( 0.22%) jobs3 perfstat instructions 154,857,283,657 ( 0.76) 2,565,748,974,197 ( 2.57) 161,515,435,813 ( 1.31) branches 41,759,490,355 ( 670.529) 304,905,605,277 ( 978.765) 33,215,805,907 ( 888.003) branch-misses 74,263,293 ( 0.18%) 759,746,240 ( 0.25%) 76,841,196 ( 0.23%) jobs4 perfstat instructions 206,215,849,076 ( 0.75) 3,420,169,460,897 ( 2.60) 215,003,061,664 ( 1.31) branches 55,632,141,739 ( 666.501) 406,394,977,433 ( 927.241) 44,214,322,251 ( 883.532) branch-misses 102,287,788 ( 0.18%) 1,098,617,314 ( 0.27%) 103,891,040 ( 0.23%) jobs5 perfstat instructions 258,711,315,588 ( 0.67) 4,275,657,533,244 ( 2.23) 269,332,235,685 ( 1.08) branches 69,802,821,166 ( 588.823) 507,996,211,252 ( 797.036) 55,450,846,129 ( 735.095) branch-misses 129,217,214 ( 0.19%) 1,243,284,991 ( 0.24%) 173,512,278 ( 0.31%) jobs6 perfstat instructions 312,796,166,008 ( 0.61) 5,133,896,344,660 ( 2.02) 323,658,769,588 ( 1.04) branches 84,372,488,583 ( 520.541) 610,310,494,402 ( 697.642) 66,683,292,992 ( 693.939) branch-misses 159,438,978 ( 0.19%) 1,396,368,563 ( 0.23%) 174,406,934 ( 0.26%) jobs7 perfstat instructions 363,211,372,930 ( 0.56) 5,988,205,600,879 ( 1.75) 377,824,674,156 ( 0.93) branches 98,057,013,765 ( 463.117) 711,841,255,974 ( 598.762) 77,879,009,954 ( 600.443) branch-misses 199,513,153 ( 0.20%) 1,507,651,077 ( 0.21%) 248,203,369 ( 0.32%) jobs8 perfstat instructions 413,960,354,615 ( 0.52) 6,842,918,558,378 ( 1.45) 431,938,486,581 ( 0.83) branches 111,812,574,884 ( 414.224) 813,299,084,518 ( 491.173) 89,062,699,827 ( 517.795) branch-misses 233,584,845 ( 0.21%) 1,531,593,921 ( 0.19%) 286,818,489 ( 0.32%) jobs9 perfstat instructions 465,976,220,300 ( 0.53) 7,698,467,237,372 ( 1.47) 486,352,600,321 ( 0.84) branches 125,931,456,162 ( 424.063) 915,207,005,715 ( 498.192) 100,370,404,090 ( 517.439) branch-misses 256,992,445 ( 0.20%) 1,782,809,816 ( 0.19%) 345,239,380 ( 0.34%) jobs10 perfstat instructions 517,406,372,715 ( 0.53) 8,553,527,312,900 ( 1.48) 540,732,653,094 ( 0.84) branches 139,839,780,676 ( 427.732) 1,016,737,699,389 ( 503.172) 111,696,557,638 ( 516.750) branch-misses 259,595,561 ( 0.19%) 1,952,570,279 ( 0.19%) 357,818,661 ( 0.32%) seconds elapsed 20.630411534 96.084546565 12.743373571 seconds elapsed 22.292627625 100.984155001 14.407413560 seconds elapsed 22.396016966 110.344880848 14.032201392 seconds elapsed 22.517330949 113.351459170 14.243074935 seconds elapsed 28.548305104 156.515193765 19.159286861 seconds elapsed 30.453538116 164.559937678 19.362492717 seconds elapsed 33.467108086 188.486827481 21.492612173 seconds elapsed 35.617727591 209.602677783 23.256422492 seconds elapsed 42.584239509 243.959902566 28.458540338 seconds elapsed 47.683632526 269.635248851 31.542404137 Over all, ZSTD has slower WRITE, but much faster READ (perhaps a static compression buffer used during the test helped ZSTD a lot), which results in faster test results. Memory consumption (zram mm_stat file): zram LZO mm_stat mm_stat (jobs1): 2147483648 23068672 33558528 0 33558528 0 0 mm_stat (jobs2): 2147483648 23068672 33558528 0 33558528 0 0 mm_stat (jobs3): 2147483648 23068672 33558528 0 33562624 0 0 mm_stat (jobs4): 2147483648 23068672 33558528 0 33558528 0 0 mm_stat (jobs5): 2147483648 23068672 33558528 0 33558528 0 0 mm_stat (jobs6): 2147483648 23068672 33558528 0 33562624 0 0 mm_stat (jobs7): 2147483648 23068672 33558528 0 33566720 0 0 mm_stat (jobs8): 2147483648 23068672 33558528 0 33558528 0 0 mm_stat (jobs9): 2147483648 23068672 33558528 0 33558528 0 0 mm_stat (jobs10): 2147483648 23068672 33558528 0 33562624 0 0 zram DEFLATE mm_stat mm_stat (jobs1): 2147483648 16252928 25178112 0 25178112 0 0 mm_stat (jobs2): 2147483648 16252928 25178112 0 25178112 0 0 mm_stat (jobs3): 2147483648 16252928 25178112 0 25178112 0 0 mm_stat (jobs4): 2147483648 16252928 25178112 0 25178112 0 0 mm_stat (jobs5): 2147483648 16252928 25178112 0 25178112 0 0 mm_stat (jobs6): 2147483648 16252928 25178112 0 25178112 0 0 mm_stat (jobs7): 2147483648 16252928 25178112 0 25190400 0 0 mm_stat (jobs8): 2147483648 16252928 25178112 0 25190400 0 0 mm_stat (jobs9): 2147483648 16252928 25178112 0 25178112 0 0 mm_stat (jobs10): 2147483648 16252928 25178112 0 25178112 0 0 zram ZSTD mm_stat mm_stat (jobs1): 2147483648 11010048 16781312 0 16781312 0 0 mm_stat (jobs2): 2147483648 11010048 16781312 0 16781312 0 0 mm_stat (jobs3): 2147483648 11010048 16781312 0 16785408 0 0 mm_stat (jobs4): 2147483648 11010048 16781312 0 16781312 0 0 mm_stat (jobs5): 2147483648 11010048 16781312 0 16781312 0 0 mm_stat (jobs6): 2147483648 11010048 16781312 0 16781312 0 0 mm_stat (jobs7): 2147483648 11010048 16781312 0 16781312 0 0 mm_stat (jobs8): 2147483648 11010048 16781312 0 16781312 0 0 mm_stat (jobs9): 2147483648 11010048 16781312 0 16785408 0 0 mm_stat (jobs10): 2147483648 11010048 16781312 0 16781312 0 0 ================================================================================== Official benchmarks [1]: Compressor name Ratio Compression Decompress. zstd 1.1.3 -1 2.877 430 MB/s 1110 MB/s zlib 1.2.8 -1 2.743 110 MB/s 400 MB/s brotli 0.5.2 -0 2.708 400 MB/s 430 MB/s quicklz 1.5.0 -1 2.238 550 MB/s 710 MB/s lzo1x 2.09 -1 2.108 650 MB/s 830 MB/s lz4 1.7.5 2.101 720 MB/s 3600 MB/s snappy 1.1.3 2.091 500 MB/s 1650 MB/s lzf 3.6 -1 2.077 400 MB/s 860 MB/s Minchan said: : I did test with my sample data and compared zstd with deflate. zstd's : compress ratio is lower a little bit but compression speed is much faster : 3 times more and decompress speed is too 2 times more. With different : data, it is different but overall, zstd would be better for speed at the : cost of a little lower compress ratio(about 5%) so I believe it's worth to : replace deflate. [1] https://github.com/facebook/zstd Link: http://lkml.kernel.org/r/20170912050005.3247-1-sergey.senozhatsky@gmail.com Signed-off-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by:
Minchan Kim <minchan@kernel.org> Tested-by:
Minchan Kim <minchan@kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 5ef3a8b12556d7fcba81edc74e9d85b029615ae0) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ieb6239dab92f560fa654d9cc29b1e266f2e44050
-
Nick Terrell authored
Add zstd compression and decompression kernel modules. zstd offers a wide varity of compression speed and quality trade-offs. It can compress at speeds approaching lz4, and quality approaching lzma. zstd decompressions at speeds more than twice as fast as zlib, and decompression speed remains roughly the same across all compression levels. The code was ported from the upstream zstd source repository. The `linux/zstd.h` header was modified to match linux kernel style. The cross-platform and allocation code was stripped out. Instead zstd requires the caller to pass a preallocated workspace. The source files were clang-formatted [1] to match the Linux Kernel style as much as possible. Otherwise, the code was unmodified. We would like to avoid as much further manual modification to the source code as possible, so it will be easier to keep the kernel zstd up to date. I benchmarked zstd compression as a special character device. I ran zstd and zlib compression at several levels, as well as performing no compression, which measure the time spent copying the data to kernel space. Data is passed to the compresser 4096 B at a time. The benchmark file is located in the upstream zstd source repository under `contrib/linux-kernel/zstd_compress_test.c` [2]. I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB of RAM. The VM is running on a MacBook Pro with a 3.1 GHz Intel Core i7 processor, 16 GB of RAM, and a SSD. I benchmarked using `silesia.tar` [3], which is 211,988,480 B large. Run the following commands for the benchmark: sudo modprobe zstd_compress_test sudo mknod zstd_compress_test c 245 0 sudo cp silesia.tar zstd_compress_test The time is reported by the time of the userland `cp`. The MB/s is computed with 1,536,217,008 B / time(buffer size, hash) which includes the time to copy from userland. The Adjusted MB/s is computed with 1,536,217,088 B / (time(buffer size, hash) - time(buffer size, none)). The memory reported is the amount of memory the compressor requests. | Method | Size (B) | Time (s) | Ratio | MB/s | Adj MB/s | Mem (MB) | |----------|----------|----------|-------|---------|----------|----------| | none | 11988480 | 0.100 | 1 | 2119.88 | - | - | | zstd -1 | 73645762 | 1.044 | 2.878 | 203.05 | 224.56 | 1.23 | | zstd -3 | 66988878 | 1.761 | 3.165 | 120.38 | 127.63 | 2.47 | | zstd -5 | 65001259 | 2.563 | 3.261 | 82.71 | 86.07 | 2.86 | | zstd -10 | 60165346 | 13.242 | 3.523 | 16.01 | 16.13 | 13.22 | | zstd -15 | 58009756 | 47.601 | 3.654 | 4.45 | 4.46 | 21.61 | | zstd -19 | 54014593 | 102.835 | 3.925 | 2.06 | 2.06 | 60.15 | | zlib -1 | 77260026 | 2.895 | 2.744 | 73.23 | 75.85 | 0.27 | | zlib -3 | 72972206 | 4.116 | 2.905 | 51.50 | 52.79 | 0.27 | | zlib -6 | 68190360 | 9.633 | 3.109 | 22.01 | 22.24 | 0.27 | | zlib -9 | 67613382 | 22.554 | 3.135 | 9.40 | 9.44 | 0.27 | I benchmarked zstd decompression using the same method on the same machine. The benchmark file is located in the upstream zstd repo under `contrib/linux-kernel/zstd_decompress_test.c` [4]. The memory reported is the amount of memory required to decompress data compressed with the given compression level. If you know the maximum size of your input, you can reduce the memory usage of decompression irrespective of the compression level. | Method | Time (s) | MB/s | Adjusted MB/s | Memory (MB) | |----------|----------|---------|---------------|-------------| | none | 0.025 | 8479.54 | - | - | | zstd -1 | 0.358 | 592.15 | 636.60 | 0.84 | | zstd -3 | 0.396 | 535.32 | 571.40 | 1.46 | | zstd -5 | 0.396 | 535.32 | 571.40 | 1.46 | | zstd -10 | 0.374 | 566.81 | 607.42 | 2.51 | | zstd -15 | 0.379 | 559.34 | 598.84 | 4.61 | | zstd -19 | 0.412 | 514.54 | 547.77 | 8.80 | | zlib -1 | 0.940 | 225.52 | 231.68 | 0.04 | | zlib -3 | 0.883 | 240.08 | 247.07 | 0.04 | | zlib -6 | 0.844 | 251.17 | 258.84 | 0.04 | | zlib -9 | 0.837 | 253.27 | 287.64 | 0.04 | Tested in userland using the test-suite in the zstd repo under `contrib/linux-kernel/test/UserlandTest.cpp` [5] by mocking the kernel functions. Fuzz tested using libfuzzer [6] with the fuzz harnesses under `contrib/linux-kernel/test/{RoundTripCrash.c,DecompressCrash.c}` [7] [8] with ASAN, UBSAN, and MSAN. Additionaly, it was tested while testing the BtrFS and SquashFS patches coming next. [1] https://clang.llvm.org/docs/ClangFormat.html [2] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/zstd_compress_test.c [3] http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia [4] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/zstd_decompress_test.c [5] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/test/UserlandTest.cpp [6] http://llvm.org/docs/LibFuzzer.html [7] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/test/RoundTripCrash.c [8] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/test/DecompressCrash.c zstd source repository: https://github.com/facebook/zstd Signed-off-by:
Nick Terrell <terrelln@fb.com> Signed-off-by:
Chris Mason <clm@fb.com> (cherry picked from commit 73f3d1b48f5069d46ba48aa28c2898dc93185560) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I47b9d43a8065b2b5a1362f8458065f0811cf70b9
-
Nick Terrell authored
Adds xxhash kernel module with xxh32 and xxh64 hashes. xxhash is an extremely fast non-cryptographic hash algorithm for checksumming. The zstd compression and decompression modules added in the next patch require xxhash. I extracted it out from zstd since it is useful on its own. I copied the code from the upstream XXHash source repository and translated it into kernel style. I ran benchmarks and tests in the kernel and tests in userland. I benchmarked xxhash as a special character device. I ran in four modes, no-op, xxh32, xxh64, and crc32. The no-op mode simply copies the data to kernel space and ignores it. The xxh32, xxh64, and crc32 modes compute hashes on the copied data. I also ran it with four different buffer sizes. The benchmark file is located in the upstream zstd source repository under `contrib/linux-kernel/xxhash_test.c` [1]. I ran the benchmarks on a Ubuntu 14.04 VM with 2 cores and 4 GiB of RAM. The VM is running on a MacBook Pro with a 3.1 GHz Intel Core i7 processor, 16 GB of RAM, and a SSD. I benchmarked using the file `filesystem.squashfs` from `ubuntu-16.10-desktop-amd64.iso`, which is 1,536,217,088 B large. Run the following commands for the benchmark: modprobe xxhash_test mknod xxhash_test c 245 0 time cp filesystem.squashfs xxhash_test The time is reported by the time of the userland `cp`. The GB/s is computed with 1,536,217,008 B / time(buffer size, hash) which includes the time to copy from userland. The Normalized GB/s is computed with 1,536,217,088 B / (time(buffer size, hash) - time(buffer size, none)). | Buffer Size (B) | Hash | Time (s) | GB/s | Adjusted GB/s | |-----------------|-------|----------|------|---------------| | 1024 | none | 0.408 | 3.77 | - | | 1024 | xxh32 | 0.649 | 2.37 | 6.37 | | 1024 | xxh64 | 0.542 | 2.83 | 11.46 | | 1024 | crc32 | 1.290 | 1.19 | 1.74 | | 4096 | none | 0.380 | 4.04 | - | | 4096 | xxh32 | 0.645 | 2.38 | 5.79 | | 4096 | xxh64 | 0.500 | 3.07 | 12.80 | | 4096 | crc32 | 1.168 | 1.32 | 1.95 | | 8192 | none | 0.351 | 4.38 | - | | 8192 | xxh32 | 0.614 | 2.50 | 5.84 | | 8192 | xxh64 | 0.464 | 3.31 | 13.60 | | 8192 | crc32 | 1.163 | 1.32 | 1.89 | | 16384 | none | 0.346 | 4.43 | - | | 16384 | xxh32 | 0.590 | 2.60 | 6.30 | | 16384 | xxh64 | 0.466 | 3.30 | 12.80 | | 16384 | crc32 | 1.183 | 1.30 | 1.84 | Tested in userland using the test-suite in the zstd repo under `contrib/linux-kernel/test/XXHashUserlandTest.cpp` [2] by mocking the kernel functions. A line in each branch of every function in `xxhash.c` was commented out to ensure that the test-suite fails. Additionally tested while testing zstd and with SMHasher [3]. [1] https://phabricator.intern.facebook.com/P57526246 [2] https://github.com/facebook/zstd/blob/dev/contrib/linux-kernel/test/XXHashUserlandTest.cpp [3] https://github.com/aappleby/smhasher zstd source repository: https://github.com/facebook/zstd XXHash source repository: https://github.com/cyan4973/xxhash Signed-off-by:
Nick Terrell <terrelln@fb.com> Signed-off-by:
Chris Mason <clm@fb.com> (cherry picked from commit 5d2405227a9eaea48e8cc95756a06d407b11f141) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I4b63e96457f17cf455591e8f35058dacd7aa9004
-
Matthias Kaehlcke authored
comp_algorithm_store() passes the size of the source buffer to strlcpy() instead of the destination buffer size. Make it explicit that the two buffers have the same size and use strcpy() instead of strlcpy(). The latter can be done safely since the function ensures that the string in the source buffer is terminated. Link: http://lkml.kernel.org/r/20170803163350.45245-1-mka@chromium.org Signed-off-by:
Matthias Kaehlcke <mka@chromium.org> Reviewed-by:
Douglas Anderson <dianders@chromium.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by:
Minchan Kim <minchan@kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit f357e345eef7863da037e0243f2d3df4ba6df986) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ic9667b215ce5e0717bc6829d65e43e9b79602362
-
Arvind Yadav authored
attribute_groups are not supposed to change at runtime. All functions working with attribute_groups provided by <linux/sysfs.h> work with const attribute_group. So mark the non-const structs as const. File size before: text data bss dec hex filename 8293 841 4 9138 23b2 drivers/block/zram/zram_drv.o File size After adding 'const': text data bss dec hex filename 8357 777 4 9138 23b2 drivers/block/zram/zram_drv.o Link: http://lkml.kernel.org/r/65680c1c4d85818f7094cbfa31c91bf28185ba1b.1499061182.git.arvind.yadav.cs@gmail.com Signed-off-by:
Arvind Yadav <arvind.yadav.cs@gmail.com> Acked-by:
Minchan Kim <minchan@kernel.org> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit bc1bb362334ebc4c65dd4301f10fb70902b3db7d) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ic0765dea8c2fadb18623605ba48748a9b33df3fa
-
Minchan Kim authored
Regardless of whether it is same page or not, it's surely write and stored to zram so we should increase pages_stored stat. Otherwise, user can see zero value via mm_stats although he writes a lot of pages to zram. Link: http://lkml.kernel.org/r/1494834068-27004-1-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 51f9f82c855d65ef14c2af10e0d2c86ec332a182) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I006d80df413a0fe0fd7dd58e535c6a2c03ab2c9d
-
Sangwoo Park authored
In page_same_filled function, all elements in the page is compared with next index value. The current comparison routine compares the (i)th and (i+1)th values of the page. In this case, two load operaions occur for each comparison. But if we store first value of the page stores at 'val' variable and using it to compare with others, the load opearation is reduced. It reduce load operation per page by up to 64times. Link: http://lkml.kernel.org/r/1488428104-7257-1-git-send-email-sangwoo2.park@lge.com Signed-off-by:
Sangwoo Park <sangwoo2.park@lge.com> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Acked-by:
Minchan Kim <minchan@kernel.org> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit f0fe9984656604ea8effd5ff82709ff8ce1f954b) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I6b58b583e83139eee9f0540da12850c43510cb8e
-
Minchan Kim authored
The zram_free_page already handles NULL handle case and same page so use it to reduce error probability. (Acutaully, I made a mistake when I handled same page feature) Link: http://lkml.kernel.org/r/1492052365-16169-7-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Cc: Hannes Reinecke <hare@suse.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 302128dce142d780417aa548bfd7ef4dfb89fa80) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: Ie38c52dfb1959377936b7cd9158ad1b5a02219bd
-
Minchan Kim authored
With element, sometime I got confused handle and element access. It might be my bad but I think it's time to introduce accessor to prevent future idiot like me. This patch is just clean-up patch so it shouldn't change any behavior. Link: http://lkml.kernel.org/r/1492052365-16169-6-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Hannes Reinecke <hare@suse.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 643ae61d0f41c48aa7179921fe15ba4b4d8ddfec) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I3916d5561ab9fb2917455cac74bee431fbe84b5d
-
Minchan Kim authored
It's redundant now. Instead, remove it and use zram structure directly. Link: http://lkml.kernel.org/r/1492052365-16169-5-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Cc: Hannes Reinecke <hare@suse.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit beb6602cf87abee547b2692031185111f625153a) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I720a282710b97fd75c156305fd505d4497b89e4c
-
Minchan Kim authored
With this clean-up phase, I want to use zram's wrapper function to lock table access which is more consistent with other zram's functions. Link: http://lkml.kernel.org/r/1492052365-16169-4-git-send-email-minchan@kernel.org Signed-off-by:
Minchan Kim <minchan@kernel.org> Reviewed-by:
Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Hannes Reinecke <hare@suse.com> Cc: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by:
Andrew Morton <akpm@linux-foundation.org> Signed-off-by:
Linus Torvalds <torvalds@linux-foundation.org> (cherry picked from commit 86c49814d449ebc51c7d455ac8e3d17b9fa702eb) Signed-off-by:
Peter Kalauskas <peskal@google.com> Bug: 112488418 Change-Id: I6afee89dce63dff6d759c78e25926814fc016107
-