Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit b6295960 authored by Vitaly Prosyak's avatar Vitaly Prosyak Committed by Alex Deucher
Browse files

drm/amd/display: Build unity lut for shaper



Add color module to diagnostic compilation

Signed-off-by: default avatarVitaly Prosyak <vitaly.prosyak@amd.com>
Reviewed-by: default avatarCharlene Liu <Charlene.Liu@amd.com>
Acked-by: default avatarHarry Wentland <harry.wentland@amd.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent 4e1c1875
Loading
Loading
Loading
Loading
+12 −0
Original line number Diff line number Diff line
@@ -565,3 +565,15 @@ uint32_t dal_fixed31_32_u0d19(
{
	return ux_dy(arg.value, 0, 19);
}

uint32_t dal_fixed31_32_u0d14(
	struct fixed31_32 arg)
{
	return ux_dy(arg.value, 1, 14);
}

uint32_t dal_fixed31_32_u0d10(
	struct fixed31_32 arg)
{
	return ux_dy(arg.value, 1, 10);
}
+2 −1
Original line number Diff line number Diff line
@@ -342,7 +342,8 @@ struct dc_hdr_static_metadata {
enum dc_transfer_func_type {
	TF_TYPE_PREDEFINED,
	TF_TYPE_DISTRIBUTED_POINTS,
	TF_TYPE_BYPASS
	TF_TYPE_BYPASS,
	TF_TYPE_UNITY
};

struct dc_transfer_func_distributed_points {
+291 −1
Original line number Diff line number Diff line
@@ -22,11 +22,12 @@
 * Authors: AMD
 *
 */

#include "dc.h"
#include "reg_helper.h"
#include "dcn10_dpp.h"

#include "dcn10_cm_common.h"
#include "custom_float.h"

#define REG(reg) reg

@@ -121,3 +122,292 @@ void cm_helper_program_xfer_func(
	}

}



bool cm_helper_convert_to_custom_float(
		struct pwl_result_data *rgb_resulted,
		struct curve_points *arr_points,
		uint32_t hw_points_num,
		bool fixpoint)
{
	struct custom_float_format fmt;

	struct pwl_result_data *rgb = rgb_resulted;

	uint32_t i = 0;

	fmt.exponenta_bits = 6;
	fmt.mantissa_bits = 12;
	fmt.sign = false;

	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
					    &arr_points[0].custom_float_x)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
					    &arr_points[0].custom_float_offset)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
					    &arr_points[0].custom_float_slope)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	fmt.mantissa_bits = 10;
	fmt.sign = false;

	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
					    &arr_points[1].custom_float_x)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
					    &arr_points[1].custom_float_y)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
					    &arr_points[1].custom_float_slope)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	if (hw_points_num == 0 || rgb_resulted == NULL || fixpoint == true)
		return true;

	fmt.mantissa_bits = 12;
	fmt.sign = true;

	while (i != hw_points_num) {
		if (!convert_to_custom_float_format(rgb->red, &fmt,
						    &rgb->red_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->green, &fmt,
						    &rgb->green_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->blue, &fmt,
						    &rgb->blue_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
						    &rgb->delta_red_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
						    &rgb->delta_green_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
						    &rgb->delta_blue_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		++rgb;
		++i;
	}

	return true;
}


#define MAX_REGIONS_NUMBER 34
#define MAX_LOW_POINT      25
#define NUMBER_SEGMENTS    32

bool cm_helper_translate_curve_to_hw_format(
				const struct dc_transfer_func *output_tf,
				struct pwl_params *lut_params, bool fixpoint)
{
	struct curve_points *arr_points;
	struct pwl_result_data *rgb_resulted;
	struct pwl_result_data *rgb;
	struct pwl_result_data *rgb_plus_1;
	struct fixed31_32 y_r;
	struct fixed31_32 y_g;
	struct fixed31_32 y_b;
	struct fixed31_32 y1_min;
	struct fixed31_32 y3_max;

	int32_t segment_start, segment_end;
	int32_t i;
	uint32_t j, k, seg_distr[MAX_REGIONS_NUMBER], increment, start_index, hw_points;

	if (output_tf == NULL || lut_params == NULL || output_tf->type == TF_TYPE_BYPASS)
		return false;

	PERF_TRACE();

	arr_points = lut_params->arr_points;
	rgb_resulted = lut_params->rgb_resulted;
	hw_points = 0;

	memset(lut_params, 0, sizeof(struct pwl_params));
	memset(seg_distr, 0, sizeof(seg_distr));

	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
		/* 32 segments
		 * segments are from 2^-25 to 2^7
		 */
		for (i = 0; i < 32 ; i++)
			seg_distr[i] = 3;

		segment_start = -25;
		segment_end   = 7;
	} else {
		/* 10 segments
		 * segment is from 2^-10 to 2^0
		 * There are less than 256 points, for optimization
		 */
		seg_distr[0] = 3;
		seg_distr[1] = 4;
		seg_distr[2] = 4;
		seg_distr[3] = 4;
		seg_distr[4] = 4;
		seg_distr[5] = 4;
		seg_distr[6] = 4;
		seg_distr[7] = 4;
		seg_distr[8] = 5;
		seg_distr[9] = 5;

		segment_start = -10;
		segment_end = 0;
	}

	for (i = segment_end - segment_start; i < MAX_REGIONS_NUMBER ; i++)
		seg_distr[i] = -1;

	for (k = 0; k < MAX_REGIONS_NUMBER; k++) {
		if (seg_distr[k] != -1)
			hw_points += (1 << seg_distr[k]);
	}

	j = 0;
	for (k = 0; k < (segment_end - segment_start); k++) {
		increment = NUMBER_SEGMENTS / (1 << seg_distr[k]);
		start_index = (segment_start + k + MAX_LOW_POINT) * NUMBER_SEGMENTS;
		for (i = start_index; i < start_index + NUMBER_SEGMENTS; i += increment) {
			if (j == hw_points - 1)
				break;
			rgb_resulted[j].red = output_tf->tf_pts.red[i];
			rgb_resulted[j].green = output_tf->tf_pts.green[i];
			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
			j++;
		}
	}

	/* last point */
	start_index = (segment_end + MAX_LOW_POINT) * NUMBER_SEGMENTS;
	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];

	arr_points[0].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
					     dal_fixed31_32_from_int(segment_start));
	arr_points[1].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
					     dal_fixed31_32_from_int(segment_end));

	y_r = rgb_resulted[0].red;
	y_g = rgb_resulted[0].green;
	y_b = rgb_resulted[0].blue;

	y1_min = dal_fixed31_32_min(y_r, dal_fixed31_32_min(y_g, y_b));

	arr_points[0].y = y1_min;
	arr_points[0].slope = dal_fixed31_32_div(arr_points[0].y, arr_points[0].x);
	y_r = rgb_resulted[hw_points - 1].red;
	y_g = rgb_resulted[hw_points - 1].green;
	y_b = rgb_resulted[hw_points - 1].blue;

	/* see comment above, m_arrPoints[1].y should be the Y value for the
	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
	 */
	y3_max = dal_fixed31_32_max(y_r, dal_fixed31_32_max(y_g, y_b));

	arr_points[1].y = y3_max;

	arr_points[1].slope = dal_fixed31_32_zero;

	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
		/* for PQ, we want to have a straight line from last HW X point,
		 * and the slope to be such that we hit 1.0 at 10000 nits.
		 */
		const struct fixed31_32 end_value =
				dal_fixed31_32_from_int(125);

		arr_points[1].slope = dal_fixed31_32_div(
			dal_fixed31_32_sub(dal_fixed31_32_one, arr_points[1].y),
			dal_fixed31_32_sub(end_value, arr_points[1].x));
	}

	lut_params->hw_points_num = hw_points;

	i = 1;
	for (k = 0; k < MAX_REGIONS_NUMBER && i < MAX_REGIONS_NUMBER; k++) {
		if (seg_distr[k] != -1) {
			lut_params->arr_curve_points[k].segments_num =
					seg_distr[k];
			lut_params->arr_curve_points[i].offset =
					lut_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
		}
		i++;
	}

	if (seg_distr[k] != -1)
		lut_params->arr_curve_points[k].segments_num = seg_distr[k];

	rgb = rgb_resulted;
	rgb_plus_1 = rgb_resulted + 1;

	i = 1;
	while (i != hw_points + 1) {
		if (dal_fixed31_32_lt(rgb_plus_1->red, rgb->red))
			rgb_plus_1->red = rgb->red;
		if (dal_fixed31_32_lt(rgb_plus_1->green, rgb->green))
			rgb_plus_1->green = rgb->green;
		if (dal_fixed31_32_lt(rgb_plus_1->blue, rgb->blue))
			rgb_plus_1->blue = rgb->blue;

		rgb->delta_red   = dal_fixed31_32_sub(rgb_plus_1->red,   rgb->red);
		rgb->delta_green = dal_fixed31_32_sub(rgb_plus_1->green, rgb->green);
		rgb->delta_blue  = dal_fixed31_32_sub(rgb_plus_1->blue,  rgb->blue);

		if (fixpoint == true) {
			rgb->delta_red_reg   = dal_fixed31_32_u0d10(rgb->delta_red);
			rgb->delta_green_reg = dal_fixed31_32_u0d10(rgb->delta_green);
			rgb->delta_blue_reg  = dal_fixed31_32_u0d10(rgb->delta_blue);
			rgb->red_reg         = dal_fixed31_32_u0d14(rgb->red);
			rgb->green_reg       = dal_fixed31_32_u0d14(rgb->green);
			rgb->blue_reg        = dal_fixed31_32_u0d14(rgb->blue);
		}

		++rgb_plus_1;
		++rgb;
		++i;
	}
	cm_helper_convert_to_custom_float(rgb_resulted,
						lut_params->arr_points,
						hw_points, fixpoint);

	return true;
}
+10 −0
Original line number Diff line number Diff line
@@ -96,4 +96,14 @@ void cm_helper_program_xfer_func(
		const struct pwl_params *params,
		const struct xfer_func_reg *reg);

bool cm_helper_convert_to_custom_float(
		struct pwl_result_data *rgb_resulted,
		struct curve_points *arr_points,
		uint32_t hw_points_num,
		bool fixpoint);

bool cm_helper_translate_curve_to_hw_format(
		const struct dc_transfer_func *output_tf,
		struct pwl_params *lut_params, bool fixpoint);

#endif
+3 −272
Original line number Diff line number Diff line
@@ -43,6 +43,7 @@
#include "custom_float.h"
#include "dcn10_hubp.h"
#include "dcn10_hubbub.h"
#include "dcn10_cm_common.h"

#define CTX \
	hws->ctx
@@ -954,280 +955,10 @@ static bool dcn10_set_input_transfer_func(struct pipe_ctx *pipe_ctx,

	return result;
}
/*modify the method to handle rgb for arr_points*/
static bool convert_to_custom_float(
		struct pwl_result_data *rgb_resulted,
		struct curve_points *arr_points,
		uint32_t hw_points_num)
{
	struct custom_float_format fmt;

	struct pwl_result_data *rgb = rgb_resulted;

	uint32_t i = 0;

	fmt.exponenta_bits = 6;
	fmt.mantissa_bits = 12;
	fmt.sign = false;

	if (!convert_to_custom_float_format(arr_points[0].x, &fmt,
					    &arr_points[0].custom_float_x)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	if (!convert_to_custom_float_format(arr_points[0].offset, &fmt,
					    &arr_points[0].custom_float_offset)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	if (!convert_to_custom_float_format(arr_points[0].slope, &fmt,
					    &arr_points[0].custom_float_slope)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	fmt.mantissa_bits = 10;
	fmt.sign = false;

	if (!convert_to_custom_float_format(arr_points[1].x, &fmt,
					    &arr_points[1].custom_float_x)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	if (!convert_to_custom_float_format(arr_points[1].y, &fmt,
					    &arr_points[1].custom_float_y)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	if (!convert_to_custom_float_format(arr_points[1].slope, &fmt,
					    &arr_points[1].custom_float_slope)) {
		BREAK_TO_DEBUGGER();
		return false;
	}

	fmt.mantissa_bits = 12;
	fmt.sign = true;

	while (i != hw_points_num) {
		if (!convert_to_custom_float_format(rgb->red, &fmt,
						    &rgb->red_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->green, &fmt,
						    &rgb->green_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->blue, &fmt,
						    &rgb->blue_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->delta_red, &fmt,
						    &rgb->delta_red_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->delta_green, &fmt,
						    &rgb->delta_green_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		if (!convert_to_custom_float_format(rgb->delta_blue, &fmt,
						    &rgb->delta_blue_reg)) {
			BREAK_TO_DEBUGGER();
			return false;
		}

		++rgb;
		++i;
	}

	return true;
}
#define MAX_REGIONS_NUMBER 34
#define MAX_LOW_POINT      25
#define NUMBER_SEGMENTS    32

static bool
dcn10_translate_regamma_to_hw_format(const struct dc_transfer_func *output_tf,
				     struct pwl_params *regamma_params)
{
	struct curve_points *arr_points;
	struct pwl_result_data *rgb_resulted;
	struct pwl_result_data *rgb;
	struct pwl_result_data *rgb_plus_1;
	struct fixed31_32 y_r;
	struct fixed31_32 y_g;
	struct fixed31_32 y_b;
	struct fixed31_32 y1_min;
	struct fixed31_32 y3_max;

	int32_t segment_start, segment_end;
	int32_t i;
	uint32_t j, k, seg_distr[MAX_REGIONS_NUMBER], increment, start_index, hw_points;

	if (output_tf == NULL || regamma_params == NULL || output_tf->type == TF_TYPE_BYPASS)
		return false;

	PERF_TRACE();

	arr_points = regamma_params->arr_points;
	rgb_resulted = regamma_params->rgb_resulted;
	hw_points = 0;

	memset(regamma_params, 0, sizeof(struct pwl_params));
	memset(seg_distr, 0, sizeof(seg_distr));

	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
		/* 32 segments
		 * segments are from 2^-25 to 2^7
		 */
		for (i = 0; i < 32 ; i++)
			seg_distr[i] = 3;

		segment_start = -25;
		segment_end   = 7;
	} else {
		/* 10 segments
		 * segment is from 2^-10 to 2^0
		 * There are less than 256 points, for optimization
		 */
		seg_distr[0] = 3;
		seg_distr[1] = 4;
		seg_distr[2] = 4;
		seg_distr[3] = 4;
		seg_distr[4] = 4;
		seg_distr[5] = 4;
		seg_distr[6] = 4;
		seg_distr[7] = 4;
		seg_distr[8] = 5;
		seg_distr[9] = 5;

		segment_start = -10;
		segment_end = 0;
	}

	for (i = segment_end - segment_start; i < MAX_REGIONS_NUMBER ; i++)
		seg_distr[i] = -1;

	for (k = 0; k < MAX_REGIONS_NUMBER; k++) {
		if (seg_distr[k] != -1)
			hw_points += (1 << seg_distr[k]);
	}

	j = 0;
	for (k = 0; k < (segment_end - segment_start); k++) {
		increment = NUMBER_SEGMENTS / (1 << seg_distr[k]);
		start_index = (segment_start + k + MAX_LOW_POINT) * NUMBER_SEGMENTS;
		for (i = start_index; i < start_index + NUMBER_SEGMENTS; i += increment) {
			if (j == hw_points - 1)
				break;
			rgb_resulted[j].red = output_tf->tf_pts.red[i];
			rgb_resulted[j].green = output_tf->tf_pts.green[i];
			rgb_resulted[j].blue = output_tf->tf_pts.blue[i];
			j++;
		}
	}

	/* last point */
	start_index = (segment_end + MAX_LOW_POINT) * NUMBER_SEGMENTS;
	rgb_resulted[hw_points - 1].red = output_tf->tf_pts.red[start_index];
	rgb_resulted[hw_points - 1].green = output_tf->tf_pts.green[start_index];
	rgb_resulted[hw_points - 1].blue = output_tf->tf_pts.blue[start_index];

	arr_points[0].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
					     dal_fixed31_32_from_int(segment_start));
	arr_points[1].x = dal_fixed31_32_pow(dal_fixed31_32_from_int(2),
					     dal_fixed31_32_from_int(segment_end));

	y_r = rgb_resulted[0].red;
	y_g = rgb_resulted[0].green;
	y_b = rgb_resulted[0].blue;

	y1_min = dal_fixed31_32_min(y_r, dal_fixed31_32_min(y_g, y_b));

	arr_points[0].y = y1_min;
	arr_points[0].slope = dal_fixed31_32_div(arr_points[0].y, arr_points[0].x);
	y_r = rgb_resulted[hw_points - 1].red;
	y_g = rgb_resulted[hw_points - 1].green;
	y_b = rgb_resulted[hw_points - 1].blue;

	/* see comment above, m_arrPoints[1].y should be the Y value for the
	 * region end (m_numOfHwPoints), not last HW point(m_numOfHwPoints - 1)
	 */
	y3_max = dal_fixed31_32_max(y_r, dal_fixed31_32_max(y_g, y_b));

	arr_points[1].y = y3_max;

	arr_points[1].slope = dal_fixed31_32_zero;

	if (output_tf->tf == TRANSFER_FUNCTION_PQ) {
		/* for PQ, we want to have a straight line from last HW X point,
		 * and the slope to be such that we hit 1.0 at 10000 nits.
		 */
		const struct fixed31_32 end_value =
				dal_fixed31_32_from_int(125);

		arr_points[1].slope = dal_fixed31_32_div(
			dal_fixed31_32_sub(dal_fixed31_32_one, arr_points[1].y),
			dal_fixed31_32_sub(end_value, arr_points[1].x));
	}

	regamma_params->hw_points_num = hw_points;

	i = 1;
	for (k = 0; k < MAX_REGIONS_NUMBER && i < MAX_REGIONS_NUMBER; k++) {
		if (seg_distr[k] != -1) {
			regamma_params->arr_curve_points[k].segments_num =
					seg_distr[k];
			regamma_params->arr_curve_points[i].offset =
					regamma_params->arr_curve_points[k].offset + (1 << seg_distr[k]);
		}
		i++;
	}

	if (seg_distr[k] != -1)
		regamma_params->arr_curve_points[k].segments_num = seg_distr[k];

	rgb = rgb_resulted;
	rgb_plus_1 = rgb_resulted + 1;

	i = 1;

	while (i != hw_points + 1) {
		if (dal_fixed31_32_lt(rgb_plus_1->red, rgb->red))
			rgb_plus_1->red = rgb->red;
		if (dal_fixed31_32_lt(rgb_plus_1->green, rgb->green))
			rgb_plus_1->green = rgb->green;
		if (dal_fixed31_32_lt(rgb_plus_1->blue, rgb->blue))
			rgb_plus_1->blue = rgb->blue;

		rgb->delta_red = dal_fixed31_32_sub(rgb_plus_1->red, rgb->red);
		rgb->delta_green = dal_fixed31_32_sub(rgb_plus_1->green, rgb->green);
		rgb->delta_blue = dal_fixed31_32_sub(rgb_plus_1->blue, rgb->blue);

		++rgb_plus_1;
		++rgb;
		++i;
	}

	convert_to_custom_float(rgb_resulted, arr_points, hw_points);

	PERF_TRACE();

	return true;
}

static bool
dcn10_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
@@ -1248,9 +979,9 @@ dcn10_set_output_transfer_func(struct pipe_ctx *pipe_ctx,
	/* dcn10_translate_regamma_to_hw_format takes 750us, only do it when full
	 * update.
	 */
	else if (dcn10_translate_regamma_to_hw_format(
	else if (cm_helper_translate_curve_to_hw_format(
			stream->out_transfer_func,
			&dpp->regamma_params)) {
			&dpp->regamma_params, false)) {
		dpp->funcs->dpp_program_regamma_pwl(
				dpp,
				&dpp->regamma_params, OPP_REGAMMA_USER);
Loading