Loading include/gui/BufferQueue.h +6 −302 Original line number Diff line number Diff line Loading @@ -17,55 +17,18 @@ #ifndef ANDROID_GUI_BUFFERQUEUE_H #define ANDROID_GUI_BUFFERQUEUE_H #include <gui/BufferQueueProducer.h> #include <gui/BufferQueueConsumer.h> #include <gui/BufferQueueDefs.h> #include <gui/IGraphicBufferConsumer.h> #include <gui/IGraphicBufferProducer.h> #include <gui/IConsumerListener.h> // These are only required to keep other parts of the framework with incomplete // dependencies building successfully #include <gui/IGraphicBufferAlloc.h> #include <binder/IBinder.h> namespace android { // BQProducer and BQConsumer are thin shim classes to allow methods with the // same signature in both IGraphicBufferProducer and IGraphicBufferConsumer. // This will stop being an issue when we deprecate creating BufferQueues // directly (as opposed to using the *Producer and *Consumer interfaces). class BQProducer : public BnGraphicBufferProducer { public: virtual status_t detachProducerBuffer(int slot) = 0; virtual status_t attachProducerBuffer(int* slot, const sp<GraphicBuffer>& buffer) = 0; virtual status_t detachBuffer(int slot) { return detachProducerBuffer(slot); } virtual status_t attachBuffer(int* slot, const sp<GraphicBuffer>& buffer) { return attachProducerBuffer(slot, buffer); } }; class BQConsumer : public BnGraphicBufferConsumer { public: virtual status_t detachConsumerBuffer(int slot) = 0; virtual status_t attachConsumerBuffer(int* slot, const sp<GraphicBuffer>& buffer) = 0; virtual status_t detachBuffer(int slot) { return detachConsumerBuffer(slot); } virtual status_t attachBuffer(int* slot, const sp<GraphicBuffer>& buffer) { return attachConsumerBuffer(slot, buffer); } }; class BufferQueue : public BQProducer, public BQConsumer, private IBinder::DeathRecipient { class BufferQueue { public: // BufferQueue will keep track of at most this value of buffers. // Attempts at runtime to increase the number of buffers past this will fail. Loading @@ -84,6 +47,7 @@ public: // for backward source compatibility typedef ::android::ConsumerListener ConsumerListener; typedef IGraphicBufferConsumer::BufferItem BufferItem; // ProxyConsumerListener is a ConsumerListener implementation that keeps a weak // reference to the actual consumer object. It forwards all calls to that Loading @@ -110,272 +74,12 @@ public: // BufferQueue manages a pool of gralloc memory slots to be used by // producers and consumers. allocator is used to allocate all the // needed gralloc buffers. BufferQueue(const sp<IGraphicBufferAlloc>& allocator = NULL); static void createBufferQueue(sp<IGraphicBufferProducer>* outProducer, sp<IGraphicBufferConsumer>* outConsumer, const sp<IGraphicBufferAlloc>& allocator = NULL); virtual ~BufferQueue(); /* * IBinder::DeathRecipient interface */ virtual void binderDied(const wp<IBinder>& who); /* * IGraphicBufferProducer interface */ // Query native window attributes. The "what" values are enumerated in // window.h (e.g. NATIVE_WINDOW_FORMAT). virtual int query(int what, int* value); // setBufferCount updates the number of available buffer slots. If this // method succeeds, buffer slots will be both unallocated and owned by // the BufferQueue object (i.e. they are not owned by the producer or // consumer). // // This will fail if the producer has dequeued any buffers, or if // bufferCount is invalid. bufferCount must generally be a value // between the minimum undequeued buffer count (exclusive) and NUM_BUFFER_SLOTS // (inclusive). It may also be set to zero (the default) to indicate // that the producer does not wish to set a value. The minimum value // can be obtained by calling query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, // ...). // // This may only be called by the producer. The consumer will be told // to discard buffers through the onBuffersReleased callback. virtual status_t setBufferCount(int bufferCount); // requestBuffer returns the GraphicBuffer for slot N. // // In normal operation, this is called the first time slot N is returned // by dequeueBuffer. It must be called again if dequeueBuffer returns // flags indicating that previously-returned buffers are no longer valid. virtual status_t requestBuffer(int slot, sp<GraphicBuffer>* buf); // dequeueBuffer gets the next buffer slot index for the producer to use. // If a buffer slot is available then that slot index is written to the // location pointed to by the buf argument and a status of OK is returned. // If no slot is available then a status of -EBUSY is returned and buf is // unmodified. // // The fence parameter will be updated to hold the fence associated with // the buffer. The contents of the buffer must not be overwritten until the // fence signals. If the fence is Fence::NO_FENCE, the buffer may be // written immediately. // // The width and height parameters must be no greater than the minimum of // GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv). // An error due to invalid dimensions might not be reported until // updateTexImage() is called. If width and height are both zero, the // default values specified by setDefaultBufferSize() are used instead. // // The pixel formats are enumerated in graphics.h, e.g. // HAL_PIXEL_FORMAT_RGBA_8888. If the format is 0, the default format // will be used. // // The usage argument specifies gralloc buffer usage flags. The values // are enumerated in gralloc.h, e.g. GRALLOC_USAGE_HW_RENDER. These // will be merged with the usage flags specified by setConsumerUsageBits. // // The return value may be a negative error value or a non-negative // collection of flags. If the flags are set, the return values are // valid, but additional actions must be performed. // // If IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION is set, the // producer must discard cached GraphicBuffer references for the slot // returned in buf. // If IGraphicBufferProducer::RELEASE_ALL_BUFFERS is set, the producer // must discard cached GraphicBuffer references for all slots. // // In both cases, the producer will need to call requestBuffer to get a // GraphicBuffer handle for the returned slot. virtual status_t dequeueBuffer(int *buf, sp<Fence>* fence, bool async, uint32_t width, uint32_t height, uint32_t format, uint32_t usage); // See IGraphicBufferProducer::detachBuffer virtual status_t detachProducerBuffer(int slot); // See IGraphicBufferProducer::detachNextBuffer virtual status_t detachNextBuffer(sp<GraphicBuffer>* outBuffer, sp<Fence>* outFence); // See IGraphicBufferProducer::attachBuffer virtual status_t attachProducerBuffer(int* slot, const sp<GraphicBuffer>& buffer); // queueBuffer returns a filled buffer to the BufferQueue. // // Additional data is provided in the QueueBufferInput struct. Notably, // a timestamp must be provided for the buffer. The timestamp is in // nanoseconds, and must be monotonically increasing. Its other semantics // (zero point, etc) are producer-specific and should be documented by the // producer. // // The caller may provide a fence that signals when all rendering // operations have completed. Alternatively, NO_FENCE may be used, // indicating that the buffer is ready immediately. // // Some values are returned in the output struct: the current settings // for default width and height, the current transform hint, and the // number of queued buffers. virtual status_t queueBuffer(int buf, const QueueBufferInput& input, QueueBufferOutput* output); // cancelBuffer returns a dequeued buffer to the BufferQueue, but doesn't // queue it for use by the consumer. // // The buffer will not be overwritten until the fence signals. The fence // will usually be the one obtained from dequeueBuffer. virtual void cancelBuffer(int buf, const sp<Fence>& fence); // See IGraphicBufferProducer::connect virtual status_t connect(const sp<IProducerListener>& listener, int api, bool producerControlledByApp, QueueBufferOutput* output); // disconnect attempts to disconnect a producer API from the BufferQueue. // Calling this method will cause any subsequent calls to other // IGraphicBufferProducer methods to fail except for getAllocator and connect. // Successfully calling connect after this will allow the other methods to // succeed again. // // This method will fail if the the BufferQueue is not currently // connected to the specified producer API. virtual status_t disconnect(int api); // Attaches a sideband buffer stream to the BufferQueue. // // A sideband stream is a device-specific mechanism for passing buffers // from the producer to the consumer without using dequeueBuffer/ // queueBuffer. If a sideband stream is present, the consumer can choose // whether to acquire buffers from the sideband stream or from the queued // buffers. // // Passing NULL or a different stream handle will detach the previous // handle if any. virtual status_t setSidebandStream(const sp<NativeHandle>& stream); /* * IGraphicBufferConsumer interface */ // acquireBuffer attempts to acquire ownership of the next pending buffer in // the BufferQueue. If no buffer is pending then it returns NO_BUFFER_AVAILABLE. If a // buffer is successfully acquired, the information about the buffer is // returned in BufferItem. If the buffer returned had previously been // acquired then the BufferItem::mGraphicBuffer field of buffer is set to // NULL and it is assumed that the consumer still holds a reference to the // buffer. // // If presentWhen is nonzero, it indicates the time when the buffer will // be displayed on screen. If the buffer's timestamp is farther in the // future, the buffer won't be acquired, and PRESENT_LATER will be // returned. The presentation time is in nanoseconds, and the time base // is CLOCK_MONOTONIC. virtual status_t acquireBuffer(BufferItem* buffer, nsecs_t presentWhen); // See IGraphicBufferConsumer::detachBuffer virtual status_t detachConsumerBuffer(int slot); // See IGraphicBufferConsumer::attachBuffer virtual status_t attachConsumerBuffer(int* slot, const sp<GraphicBuffer>& buffer); // releaseBuffer releases a buffer slot from the consumer back to the // BufferQueue. This may be done while the buffer's contents are still // being accessed. The fence will signal when the buffer is no longer // in use. frameNumber is used to indentify the exact buffer returned. // // If releaseBuffer returns STALE_BUFFER_SLOT, then the consumer must free // any references to the just-released buffer that it might have, as if it // had received a onBuffersReleased() call with a mask set for the released // buffer. // // Note that the dependencies on EGL will be removed once we switch to using // the Android HW Sync HAL. virtual status_t releaseBuffer(int buf, uint64_t frameNumber, EGLDisplay display, EGLSyncKHR fence, const sp<Fence>& releaseFence); // consumerConnect connects a consumer to the BufferQueue. Only one // consumer may be connected, and when that consumer disconnects the // BufferQueue is placed into the "abandoned" state, causing most // interactions with the BufferQueue by the producer to fail. // controlledByApp indicates whether the consumer is controlled by // the application. // // consumer may not be NULL. virtual status_t consumerConnect(const sp<IConsumerListener>& consumer, bool controlledByApp); // consumerDisconnect disconnects a consumer from the BufferQueue. All // buffers will be freed and the BufferQueue is placed in the "abandoned" // state, causing most interactions with the BufferQueue by the producer to // fail. virtual status_t consumerDisconnect(); // getReleasedBuffers sets the value pointed to by slotMask to a bit mask // indicating which buffer slots have been released by the BufferQueue // but have not yet been released by the consumer. // // This should be called from the onBuffersReleased() callback. virtual status_t getReleasedBuffers(uint64_t* slotMask); // setDefaultBufferSize is used to set the size of buffers returned by // dequeueBuffer when a width and height of zero is requested. Default // is 1x1. virtual status_t setDefaultBufferSize(uint32_t w, uint32_t h); // setDefaultMaxBufferCount sets the default value for the maximum buffer // count (the initial default is 2). If the producer has requested a // buffer count using setBufferCount, the default buffer count will only // take effect if the producer sets the count back to zero. // // The count must be between 2 and NUM_BUFFER_SLOTS, inclusive. virtual status_t setDefaultMaxBufferCount(int bufferCount); // disableAsyncBuffer disables the extra buffer used in async mode // (when both producer and consumer have set their "isControlledByApp" // flag) and has dequeueBuffer() return WOULD_BLOCK instead. // // This can only be called before consumerConnect(). virtual status_t disableAsyncBuffer(); // setMaxAcquiredBufferCount sets the maximum number of buffers that can // be acquired by the consumer at one time (default 1). This call will // fail if a producer is connected to the BufferQueue. virtual status_t setMaxAcquiredBufferCount(int maxAcquiredBuffers); // setConsumerName sets the name used in logging virtual void setConsumerName(const String8& name); // setDefaultBufferFormat allows the BufferQueue to create // GraphicBuffers of a defaultFormat if no format is specified // in dequeueBuffer. Formats are enumerated in graphics.h; the // initial default is HAL_PIXEL_FORMAT_RGBA_8888. virtual status_t setDefaultBufferFormat(uint32_t defaultFormat); // setConsumerUsageBits will turn on additional usage bits for dequeueBuffer. // These are merged with the bits passed to dequeueBuffer. The values are // enumerated in gralloc.h, e.g. GRALLOC_USAGE_HW_RENDER; the default is 0. virtual status_t setConsumerUsageBits(uint32_t usage); // setTransformHint bakes in rotation to buffers so overlays can be used. // The values are enumerated in window.h, e.g. // NATIVE_WINDOW_TRANSFORM_ROT_90. The default is 0 (no transform). virtual status_t setTransformHint(uint32_t hint); // Retrieve the BufferQueue's sideband stream, if any. virtual sp<NativeHandle> getSidebandStream() const; // dump our state in a String virtual void dump(String8& result, const char* prefix) const; private: sp<BufferQueueProducer> mProducer; sp<BufferQueueConsumer> mConsumer; BufferQueue(); // Create through createBufferQueue }; // ---------------------------------------------------------------------------- Loading libs/gui/BufferQueue.cpp +9 −147 Original line number Diff line number Diff line Loading @@ -19,7 +19,9 @@ //#define LOG_NDEBUG 0 #include <gui/BufferQueue.h> #include <gui/BufferQueueConsumer.h> #include <gui/BufferQueueCore.h> #include <gui/BufferQueueProducer.h> namespace android { Loading @@ -43,6 +45,13 @@ void BufferQueue::ProxyConsumerListener::onBuffersReleased() { } } void BufferQueue::ProxyConsumerListener::onSidebandStreamChanged() { sp<ConsumerListener> listener(mConsumerListener.promote()); if (listener != NULL) { listener->onSidebandStreamChanged(); } } void BufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer, sp<IGraphicBufferConsumer>* outConsumer, const sp<IGraphicBufferAlloc>& allocator) { Loading @@ -67,151 +76,4 @@ void BufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer, *outConsumer = consumer; } BufferQueue::BufferQueue(const sp<IGraphicBufferAlloc>& allocator) : mProducer(), mConsumer() { sp<BufferQueueCore> core(new BufferQueueCore(allocator)); mProducer = new BufferQueueProducer(core); mConsumer = new BufferQueueConsumer(core); } BufferQueue::~BufferQueue() {} void BufferQueue::binderDied(const wp<IBinder>& who) { mProducer->binderDied(who); } int BufferQueue::query(int what, int* outValue) { return mProducer->query(what, outValue); } status_t BufferQueue::setBufferCount(int bufferCount) { return mProducer->setBufferCount(bufferCount); } status_t BufferQueue::requestBuffer(int slot, sp<GraphicBuffer>* buf) { return mProducer->requestBuffer(slot, buf); } status_t BufferQueue::dequeueBuffer(int *outBuf, sp<Fence>* outFence, bool async, uint32_t w, uint32_t h, uint32_t format, uint32_t usage) { return mProducer->dequeueBuffer(outBuf, outFence, async, w, h, format, usage); } status_t BufferQueue::detachProducerBuffer(int slot) { return mProducer->detachBuffer(slot); } status_t BufferQueue::detachNextBuffer(sp<GraphicBuffer>* outBuffer, sp<Fence>* outFence) { return mProducer->detachNextBuffer(outBuffer, outFence); } status_t BufferQueue::attachProducerBuffer(int* slot, const sp<GraphicBuffer>& buffer) { return mProducer->attachBuffer(slot, buffer); } status_t BufferQueue::queueBuffer(int buf, const QueueBufferInput& input, QueueBufferOutput* output) { return mProducer->queueBuffer(buf, input, output); } void BufferQueue::cancelBuffer(int buf, const sp<Fence>& fence) { mProducer->cancelBuffer(buf, fence); } status_t BufferQueue::connect(const sp<IProducerListener>& listener, int api, bool producerControlledByApp, QueueBufferOutput* output) { return mProducer->connect(listener, api, producerControlledByApp, output); } status_t BufferQueue::disconnect(int api) { return mProducer->disconnect(api); } status_t BufferQueue::setSidebandStream(const sp<NativeHandle>& stream) { return mProducer->setSidebandStream(stream); } status_t BufferQueue::acquireBuffer(BufferItem* buffer, nsecs_t presentWhen) { return mConsumer->acquireBuffer(buffer, presentWhen); } status_t BufferQueue::detachConsumerBuffer(int slot) { return mConsumer->detachBuffer(slot); } status_t BufferQueue::attachConsumerBuffer(int* slot, const sp<GraphicBuffer>& buffer) { return mConsumer->attachBuffer(slot, buffer); } status_t BufferQueue::releaseBuffer( int buf, uint64_t frameNumber, EGLDisplay display, EGLSyncKHR eglFence, const sp<Fence>& fence) { return mConsumer->releaseBuffer(buf, frameNumber, fence, display, eglFence); } status_t BufferQueue::consumerConnect(const sp<IConsumerListener>& consumerListener, bool controlledByApp) { return mConsumer->connect(consumerListener, controlledByApp); } status_t BufferQueue::consumerDisconnect() { return mConsumer->disconnect(); } status_t BufferQueue::getReleasedBuffers(uint64_t* slotMask) { return mConsumer->getReleasedBuffers(slotMask); } status_t BufferQueue::setDefaultBufferSize(uint32_t w, uint32_t h) { return mConsumer->setDefaultBufferSize(w, h); } status_t BufferQueue::setDefaultMaxBufferCount(int bufferCount) { return mConsumer->setDefaultMaxBufferCount(bufferCount); } status_t BufferQueue::disableAsyncBuffer() { return mConsumer->disableAsyncBuffer(); } status_t BufferQueue::setMaxAcquiredBufferCount(int maxAcquiredBuffers) { return mConsumer->setMaxAcquiredBufferCount(maxAcquiredBuffers); } void BufferQueue::setConsumerName(const String8& name) { mConsumer->setConsumerName(name); } status_t BufferQueue::setDefaultBufferFormat(uint32_t defaultFormat) { return mConsumer->setDefaultBufferFormat(defaultFormat); } status_t BufferQueue::setConsumerUsageBits(uint32_t usage) { return mConsumer->setConsumerUsageBits(usage); } status_t BufferQueue::setTransformHint(uint32_t hint) { return mConsumer->setTransformHint(hint); } sp<NativeHandle> BufferQueue::getSidebandStream() const { return mConsumer->getSidebandStream(); } void BufferQueue::dump(String8& result, const char* prefix) const { mConsumer->dump(result, prefix); } void BufferQueue::ProxyConsumerListener::onSidebandStreamChanged() { sp<ConsumerListener> listener(mConsumerListener.promote()); if (listener != NULL) { listener->onSidebandStreamChanged(); } } }; // namespace android Loading
include/gui/BufferQueue.h +6 −302 Original line number Diff line number Diff line Loading @@ -17,55 +17,18 @@ #ifndef ANDROID_GUI_BUFFERQUEUE_H #define ANDROID_GUI_BUFFERQUEUE_H #include <gui/BufferQueueProducer.h> #include <gui/BufferQueueConsumer.h> #include <gui/BufferQueueDefs.h> #include <gui/IGraphicBufferConsumer.h> #include <gui/IGraphicBufferProducer.h> #include <gui/IConsumerListener.h> // These are only required to keep other parts of the framework with incomplete // dependencies building successfully #include <gui/IGraphicBufferAlloc.h> #include <binder/IBinder.h> namespace android { // BQProducer and BQConsumer are thin shim classes to allow methods with the // same signature in both IGraphicBufferProducer and IGraphicBufferConsumer. // This will stop being an issue when we deprecate creating BufferQueues // directly (as opposed to using the *Producer and *Consumer interfaces). class BQProducer : public BnGraphicBufferProducer { public: virtual status_t detachProducerBuffer(int slot) = 0; virtual status_t attachProducerBuffer(int* slot, const sp<GraphicBuffer>& buffer) = 0; virtual status_t detachBuffer(int slot) { return detachProducerBuffer(slot); } virtual status_t attachBuffer(int* slot, const sp<GraphicBuffer>& buffer) { return attachProducerBuffer(slot, buffer); } }; class BQConsumer : public BnGraphicBufferConsumer { public: virtual status_t detachConsumerBuffer(int slot) = 0; virtual status_t attachConsumerBuffer(int* slot, const sp<GraphicBuffer>& buffer) = 0; virtual status_t detachBuffer(int slot) { return detachConsumerBuffer(slot); } virtual status_t attachBuffer(int* slot, const sp<GraphicBuffer>& buffer) { return attachConsumerBuffer(slot, buffer); } }; class BufferQueue : public BQProducer, public BQConsumer, private IBinder::DeathRecipient { class BufferQueue { public: // BufferQueue will keep track of at most this value of buffers. // Attempts at runtime to increase the number of buffers past this will fail. Loading @@ -84,6 +47,7 @@ public: // for backward source compatibility typedef ::android::ConsumerListener ConsumerListener; typedef IGraphicBufferConsumer::BufferItem BufferItem; // ProxyConsumerListener is a ConsumerListener implementation that keeps a weak // reference to the actual consumer object. It forwards all calls to that Loading @@ -110,272 +74,12 @@ public: // BufferQueue manages a pool of gralloc memory slots to be used by // producers and consumers. allocator is used to allocate all the // needed gralloc buffers. BufferQueue(const sp<IGraphicBufferAlloc>& allocator = NULL); static void createBufferQueue(sp<IGraphicBufferProducer>* outProducer, sp<IGraphicBufferConsumer>* outConsumer, const sp<IGraphicBufferAlloc>& allocator = NULL); virtual ~BufferQueue(); /* * IBinder::DeathRecipient interface */ virtual void binderDied(const wp<IBinder>& who); /* * IGraphicBufferProducer interface */ // Query native window attributes. The "what" values are enumerated in // window.h (e.g. NATIVE_WINDOW_FORMAT). virtual int query(int what, int* value); // setBufferCount updates the number of available buffer slots. If this // method succeeds, buffer slots will be both unallocated and owned by // the BufferQueue object (i.e. they are not owned by the producer or // consumer). // // This will fail if the producer has dequeued any buffers, or if // bufferCount is invalid. bufferCount must generally be a value // between the minimum undequeued buffer count (exclusive) and NUM_BUFFER_SLOTS // (inclusive). It may also be set to zero (the default) to indicate // that the producer does not wish to set a value. The minimum value // can be obtained by calling query(NATIVE_WINDOW_MIN_UNDEQUEUED_BUFFERS, // ...). // // This may only be called by the producer. The consumer will be told // to discard buffers through the onBuffersReleased callback. virtual status_t setBufferCount(int bufferCount); // requestBuffer returns the GraphicBuffer for slot N. // // In normal operation, this is called the first time slot N is returned // by dequeueBuffer. It must be called again if dequeueBuffer returns // flags indicating that previously-returned buffers are no longer valid. virtual status_t requestBuffer(int slot, sp<GraphicBuffer>* buf); // dequeueBuffer gets the next buffer slot index for the producer to use. // If a buffer slot is available then that slot index is written to the // location pointed to by the buf argument and a status of OK is returned. // If no slot is available then a status of -EBUSY is returned and buf is // unmodified. // // The fence parameter will be updated to hold the fence associated with // the buffer. The contents of the buffer must not be overwritten until the // fence signals. If the fence is Fence::NO_FENCE, the buffer may be // written immediately. // // The width and height parameters must be no greater than the minimum of // GL_MAX_VIEWPORT_DIMS and GL_MAX_TEXTURE_SIZE (see: glGetIntegerv). // An error due to invalid dimensions might not be reported until // updateTexImage() is called. If width and height are both zero, the // default values specified by setDefaultBufferSize() are used instead. // // The pixel formats are enumerated in graphics.h, e.g. // HAL_PIXEL_FORMAT_RGBA_8888. If the format is 0, the default format // will be used. // // The usage argument specifies gralloc buffer usage flags. The values // are enumerated in gralloc.h, e.g. GRALLOC_USAGE_HW_RENDER. These // will be merged with the usage flags specified by setConsumerUsageBits. // // The return value may be a negative error value or a non-negative // collection of flags. If the flags are set, the return values are // valid, but additional actions must be performed. // // If IGraphicBufferProducer::BUFFER_NEEDS_REALLOCATION is set, the // producer must discard cached GraphicBuffer references for the slot // returned in buf. // If IGraphicBufferProducer::RELEASE_ALL_BUFFERS is set, the producer // must discard cached GraphicBuffer references for all slots. // // In both cases, the producer will need to call requestBuffer to get a // GraphicBuffer handle for the returned slot. virtual status_t dequeueBuffer(int *buf, sp<Fence>* fence, bool async, uint32_t width, uint32_t height, uint32_t format, uint32_t usage); // See IGraphicBufferProducer::detachBuffer virtual status_t detachProducerBuffer(int slot); // See IGraphicBufferProducer::detachNextBuffer virtual status_t detachNextBuffer(sp<GraphicBuffer>* outBuffer, sp<Fence>* outFence); // See IGraphicBufferProducer::attachBuffer virtual status_t attachProducerBuffer(int* slot, const sp<GraphicBuffer>& buffer); // queueBuffer returns a filled buffer to the BufferQueue. // // Additional data is provided in the QueueBufferInput struct. Notably, // a timestamp must be provided for the buffer. The timestamp is in // nanoseconds, and must be monotonically increasing. Its other semantics // (zero point, etc) are producer-specific and should be documented by the // producer. // // The caller may provide a fence that signals when all rendering // operations have completed. Alternatively, NO_FENCE may be used, // indicating that the buffer is ready immediately. // // Some values are returned in the output struct: the current settings // for default width and height, the current transform hint, and the // number of queued buffers. virtual status_t queueBuffer(int buf, const QueueBufferInput& input, QueueBufferOutput* output); // cancelBuffer returns a dequeued buffer to the BufferQueue, but doesn't // queue it for use by the consumer. // // The buffer will not be overwritten until the fence signals. The fence // will usually be the one obtained from dequeueBuffer. virtual void cancelBuffer(int buf, const sp<Fence>& fence); // See IGraphicBufferProducer::connect virtual status_t connect(const sp<IProducerListener>& listener, int api, bool producerControlledByApp, QueueBufferOutput* output); // disconnect attempts to disconnect a producer API from the BufferQueue. // Calling this method will cause any subsequent calls to other // IGraphicBufferProducer methods to fail except for getAllocator and connect. // Successfully calling connect after this will allow the other methods to // succeed again. // // This method will fail if the the BufferQueue is not currently // connected to the specified producer API. virtual status_t disconnect(int api); // Attaches a sideband buffer stream to the BufferQueue. // // A sideband stream is a device-specific mechanism for passing buffers // from the producer to the consumer without using dequeueBuffer/ // queueBuffer. If a sideband stream is present, the consumer can choose // whether to acquire buffers from the sideband stream or from the queued // buffers. // // Passing NULL or a different stream handle will detach the previous // handle if any. virtual status_t setSidebandStream(const sp<NativeHandle>& stream); /* * IGraphicBufferConsumer interface */ // acquireBuffer attempts to acquire ownership of the next pending buffer in // the BufferQueue. If no buffer is pending then it returns NO_BUFFER_AVAILABLE. If a // buffer is successfully acquired, the information about the buffer is // returned in BufferItem. If the buffer returned had previously been // acquired then the BufferItem::mGraphicBuffer field of buffer is set to // NULL and it is assumed that the consumer still holds a reference to the // buffer. // // If presentWhen is nonzero, it indicates the time when the buffer will // be displayed on screen. If the buffer's timestamp is farther in the // future, the buffer won't be acquired, and PRESENT_LATER will be // returned. The presentation time is in nanoseconds, and the time base // is CLOCK_MONOTONIC. virtual status_t acquireBuffer(BufferItem* buffer, nsecs_t presentWhen); // See IGraphicBufferConsumer::detachBuffer virtual status_t detachConsumerBuffer(int slot); // See IGraphicBufferConsumer::attachBuffer virtual status_t attachConsumerBuffer(int* slot, const sp<GraphicBuffer>& buffer); // releaseBuffer releases a buffer slot from the consumer back to the // BufferQueue. This may be done while the buffer's contents are still // being accessed. The fence will signal when the buffer is no longer // in use. frameNumber is used to indentify the exact buffer returned. // // If releaseBuffer returns STALE_BUFFER_SLOT, then the consumer must free // any references to the just-released buffer that it might have, as if it // had received a onBuffersReleased() call with a mask set for the released // buffer. // // Note that the dependencies on EGL will be removed once we switch to using // the Android HW Sync HAL. virtual status_t releaseBuffer(int buf, uint64_t frameNumber, EGLDisplay display, EGLSyncKHR fence, const sp<Fence>& releaseFence); // consumerConnect connects a consumer to the BufferQueue. Only one // consumer may be connected, and when that consumer disconnects the // BufferQueue is placed into the "abandoned" state, causing most // interactions with the BufferQueue by the producer to fail. // controlledByApp indicates whether the consumer is controlled by // the application. // // consumer may not be NULL. virtual status_t consumerConnect(const sp<IConsumerListener>& consumer, bool controlledByApp); // consumerDisconnect disconnects a consumer from the BufferQueue. All // buffers will be freed and the BufferQueue is placed in the "abandoned" // state, causing most interactions with the BufferQueue by the producer to // fail. virtual status_t consumerDisconnect(); // getReleasedBuffers sets the value pointed to by slotMask to a bit mask // indicating which buffer slots have been released by the BufferQueue // but have not yet been released by the consumer. // // This should be called from the onBuffersReleased() callback. virtual status_t getReleasedBuffers(uint64_t* slotMask); // setDefaultBufferSize is used to set the size of buffers returned by // dequeueBuffer when a width and height of zero is requested. Default // is 1x1. virtual status_t setDefaultBufferSize(uint32_t w, uint32_t h); // setDefaultMaxBufferCount sets the default value for the maximum buffer // count (the initial default is 2). If the producer has requested a // buffer count using setBufferCount, the default buffer count will only // take effect if the producer sets the count back to zero. // // The count must be between 2 and NUM_BUFFER_SLOTS, inclusive. virtual status_t setDefaultMaxBufferCount(int bufferCount); // disableAsyncBuffer disables the extra buffer used in async mode // (when both producer and consumer have set their "isControlledByApp" // flag) and has dequeueBuffer() return WOULD_BLOCK instead. // // This can only be called before consumerConnect(). virtual status_t disableAsyncBuffer(); // setMaxAcquiredBufferCount sets the maximum number of buffers that can // be acquired by the consumer at one time (default 1). This call will // fail if a producer is connected to the BufferQueue. virtual status_t setMaxAcquiredBufferCount(int maxAcquiredBuffers); // setConsumerName sets the name used in logging virtual void setConsumerName(const String8& name); // setDefaultBufferFormat allows the BufferQueue to create // GraphicBuffers of a defaultFormat if no format is specified // in dequeueBuffer. Formats are enumerated in graphics.h; the // initial default is HAL_PIXEL_FORMAT_RGBA_8888. virtual status_t setDefaultBufferFormat(uint32_t defaultFormat); // setConsumerUsageBits will turn on additional usage bits for dequeueBuffer. // These are merged with the bits passed to dequeueBuffer. The values are // enumerated in gralloc.h, e.g. GRALLOC_USAGE_HW_RENDER; the default is 0. virtual status_t setConsumerUsageBits(uint32_t usage); // setTransformHint bakes in rotation to buffers so overlays can be used. // The values are enumerated in window.h, e.g. // NATIVE_WINDOW_TRANSFORM_ROT_90. The default is 0 (no transform). virtual status_t setTransformHint(uint32_t hint); // Retrieve the BufferQueue's sideband stream, if any. virtual sp<NativeHandle> getSidebandStream() const; // dump our state in a String virtual void dump(String8& result, const char* prefix) const; private: sp<BufferQueueProducer> mProducer; sp<BufferQueueConsumer> mConsumer; BufferQueue(); // Create through createBufferQueue }; // ---------------------------------------------------------------------------- Loading
libs/gui/BufferQueue.cpp +9 −147 Original line number Diff line number Diff line Loading @@ -19,7 +19,9 @@ //#define LOG_NDEBUG 0 #include <gui/BufferQueue.h> #include <gui/BufferQueueConsumer.h> #include <gui/BufferQueueCore.h> #include <gui/BufferQueueProducer.h> namespace android { Loading @@ -43,6 +45,13 @@ void BufferQueue::ProxyConsumerListener::onBuffersReleased() { } } void BufferQueue::ProxyConsumerListener::onSidebandStreamChanged() { sp<ConsumerListener> listener(mConsumerListener.promote()); if (listener != NULL) { listener->onSidebandStreamChanged(); } } void BufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer, sp<IGraphicBufferConsumer>* outConsumer, const sp<IGraphicBufferAlloc>& allocator) { Loading @@ -67,151 +76,4 @@ void BufferQueue::createBufferQueue(sp<IGraphicBufferProducer>* outProducer, *outConsumer = consumer; } BufferQueue::BufferQueue(const sp<IGraphicBufferAlloc>& allocator) : mProducer(), mConsumer() { sp<BufferQueueCore> core(new BufferQueueCore(allocator)); mProducer = new BufferQueueProducer(core); mConsumer = new BufferQueueConsumer(core); } BufferQueue::~BufferQueue() {} void BufferQueue::binderDied(const wp<IBinder>& who) { mProducer->binderDied(who); } int BufferQueue::query(int what, int* outValue) { return mProducer->query(what, outValue); } status_t BufferQueue::setBufferCount(int bufferCount) { return mProducer->setBufferCount(bufferCount); } status_t BufferQueue::requestBuffer(int slot, sp<GraphicBuffer>* buf) { return mProducer->requestBuffer(slot, buf); } status_t BufferQueue::dequeueBuffer(int *outBuf, sp<Fence>* outFence, bool async, uint32_t w, uint32_t h, uint32_t format, uint32_t usage) { return mProducer->dequeueBuffer(outBuf, outFence, async, w, h, format, usage); } status_t BufferQueue::detachProducerBuffer(int slot) { return mProducer->detachBuffer(slot); } status_t BufferQueue::detachNextBuffer(sp<GraphicBuffer>* outBuffer, sp<Fence>* outFence) { return mProducer->detachNextBuffer(outBuffer, outFence); } status_t BufferQueue::attachProducerBuffer(int* slot, const sp<GraphicBuffer>& buffer) { return mProducer->attachBuffer(slot, buffer); } status_t BufferQueue::queueBuffer(int buf, const QueueBufferInput& input, QueueBufferOutput* output) { return mProducer->queueBuffer(buf, input, output); } void BufferQueue::cancelBuffer(int buf, const sp<Fence>& fence) { mProducer->cancelBuffer(buf, fence); } status_t BufferQueue::connect(const sp<IProducerListener>& listener, int api, bool producerControlledByApp, QueueBufferOutput* output) { return mProducer->connect(listener, api, producerControlledByApp, output); } status_t BufferQueue::disconnect(int api) { return mProducer->disconnect(api); } status_t BufferQueue::setSidebandStream(const sp<NativeHandle>& stream) { return mProducer->setSidebandStream(stream); } status_t BufferQueue::acquireBuffer(BufferItem* buffer, nsecs_t presentWhen) { return mConsumer->acquireBuffer(buffer, presentWhen); } status_t BufferQueue::detachConsumerBuffer(int slot) { return mConsumer->detachBuffer(slot); } status_t BufferQueue::attachConsumerBuffer(int* slot, const sp<GraphicBuffer>& buffer) { return mConsumer->attachBuffer(slot, buffer); } status_t BufferQueue::releaseBuffer( int buf, uint64_t frameNumber, EGLDisplay display, EGLSyncKHR eglFence, const sp<Fence>& fence) { return mConsumer->releaseBuffer(buf, frameNumber, fence, display, eglFence); } status_t BufferQueue::consumerConnect(const sp<IConsumerListener>& consumerListener, bool controlledByApp) { return mConsumer->connect(consumerListener, controlledByApp); } status_t BufferQueue::consumerDisconnect() { return mConsumer->disconnect(); } status_t BufferQueue::getReleasedBuffers(uint64_t* slotMask) { return mConsumer->getReleasedBuffers(slotMask); } status_t BufferQueue::setDefaultBufferSize(uint32_t w, uint32_t h) { return mConsumer->setDefaultBufferSize(w, h); } status_t BufferQueue::setDefaultMaxBufferCount(int bufferCount) { return mConsumer->setDefaultMaxBufferCount(bufferCount); } status_t BufferQueue::disableAsyncBuffer() { return mConsumer->disableAsyncBuffer(); } status_t BufferQueue::setMaxAcquiredBufferCount(int maxAcquiredBuffers) { return mConsumer->setMaxAcquiredBufferCount(maxAcquiredBuffers); } void BufferQueue::setConsumerName(const String8& name) { mConsumer->setConsumerName(name); } status_t BufferQueue::setDefaultBufferFormat(uint32_t defaultFormat) { return mConsumer->setDefaultBufferFormat(defaultFormat); } status_t BufferQueue::setConsumerUsageBits(uint32_t usage) { return mConsumer->setConsumerUsageBits(usage); } status_t BufferQueue::setTransformHint(uint32_t hint) { return mConsumer->setTransformHint(hint); } sp<NativeHandle> BufferQueue::getSidebandStream() const { return mConsumer->getSidebandStream(); } void BufferQueue::dump(String8& result, const char* prefix) const { mConsumer->dump(result, prefix); } void BufferQueue::ProxyConsumerListener::onSidebandStreamChanged() { sp<ConsumerListener> listener(mConsumerListener.promote()); if (listener != NULL) { listener->onSidebandStreamChanged(); } } }; // namespace android