Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 6a288d81 authored by Treehugger Robot's avatar Treehugger Robot Committed by Gerrit Code Review
Browse files

Merge "liblp: Implement support for request queue alignment."

parents de1d06ef 2332afb3
Loading
Loading
Loading
Loading
+1 −0
Original line number Diff line number Diff line
@@ -52,6 +52,7 @@ cc_test {
        "libcrypto",
        "libcrypto_utils",
        "liblp",
        "libfs_mgr",
    ],
    srcs: [
        "builder_test.cpp",
+129 −22
Original line number Diff line number Diff line
@@ -16,22 +16,47 @@

#include "liblp/builder.h"

#if defined(__linux__)
#include <linux/fs.h>
#endif
#include <string.h>
#include <sys/ioctl.h>

#include <algorithm>

#include <android-base/unique_fd.h>
#include <uuid/uuid.h>

#include "liblp/metadata_format.h"
#include "liblp/reader.h"
#include "utility.h"

namespace android {
namespace fs_mgr {

// Align a byte count up to the nearest 512-byte sector.
template <typename T>
static inline T AlignToSector(T value) {
    return (value + (LP_SECTOR_SIZE - 1)) & ~T(LP_SECTOR_SIZE - 1);
bool GetBlockDeviceInfo(const std::string& block_device, BlockDeviceInfo* device_info) {
#if defined(__linux__)
    android::base::unique_fd fd(open(block_device.c_str(), O_RDONLY));
    if (fd < 0) {
        PERROR << __PRETTY_FUNCTION__ << "open '" << block_device << "' failed";
        return false;
    }
    if (!GetDescriptorSize(fd, &device_info->size)) {
        return false;
    }
    if (ioctl(fd, BLKIOMIN, &device_info->alignment) < 0) {
        PERROR << __PRETTY_FUNCTION__ << "BLKIOMIN failed";
        return false;
    }
    if (ioctl(fd, BLKALIGNOFF, &device_info->alignment_offset) < 0) {
        PERROR << __PRETTY_FUNCTION__ << "BLKIOMIN failed";
        return false;
    }
    return true;
#else
    LERROR << __PRETTY_FUNCTION__ << ": Not supported on this operating system.";
    return false;
#endif
}

void LinearExtent::AddTo(LpMetadata* out) const {
@@ -56,7 +81,7 @@ void Partition::RemoveExtents() {
}

void Partition::ShrinkTo(uint64_t requested_size) {
    uint64_t aligned_size = AlignToSector(requested_size);
    uint64_t aligned_size = AlignTo(requested_size, LP_SECTOR_SIZE);
    if (size_ <= aligned_size) {
        return;
    }
@@ -82,11 +107,28 @@ void Partition::ShrinkTo(uint64_t requested_size) {
    DCHECK(size_ == requested_size);
}

std::unique_ptr<MetadataBuilder> MetadataBuilder::New(uint64_t blockdevice_size,
std::unique_ptr<MetadataBuilder> MetadataBuilder::New(const std::string& block_device,
                                                      uint32_t slot_number) {
    std::unique_ptr<LpMetadata> metadata = ReadMetadata(block_device.c_str(), slot_number);
    if (!metadata) {
        return nullptr;
    }
    std::unique_ptr<MetadataBuilder> builder = New(*metadata.get());
    if (!builder) {
        return nullptr;
    }
    BlockDeviceInfo device_info;
    if (fs_mgr::GetBlockDeviceInfo(block_device, &device_info)) {
        builder->set_block_device_info(device_info);
    }
    return builder;
}

std::unique_ptr<MetadataBuilder> MetadataBuilder::New(const BlockDeviceInfo& device_info,
                                                      uint32_t metadata_max_size,
                                                      uint32_t metadata_slot_count) {
    std::unique_ptr<MetadataBuilder> builder(new MetadataBuilder());
    if (!builder->Init(blockdevice_size, metadata_max_size, metadata_slot_count)) {
    if (!builder->Init(device_info, metadata_max_size, metadata_slot_count)) {
        return nullptr;
    }
    return builder;
@@ -135,10 +177,13 @@ bool MetadataBuilder::Init(const LpMetadata& metadata) {
            }
        }
    }

    device_info_.alignment = geometry_.alignment;
    device_info_.alignment_offset = geometry_.alignment_offset;
    return true;
}

bool MetadataBuilder::Init(uint64_t blockdevice_size, uint32_t metadata_max_size,
bool MetadataBuilder::Init(const BlockDeviceInfo& device_info, uint32_t metadata_max_size,
                           uint32_t metadata_slot_count) {
    if (metadata_max_size < sizeof(LpMetadataHeader)) {
        LERROR << "Invalid metadata maximum size.";
@@ -150,7 +195,22 @@ bool MetadataBuilder::Init(uint64_t blockdevice_size, uint32_t metadata_max_size
    }

    // Align the metadata size up to the nearest sector.
    metadata_max_size = AlignToSector(metadata_max_size);
    metadata_max_size = AlignTo(metadata_max_size, LP_SECTOR_SIZE);

    // Check that device properties are sane.
    if (device_info_.alignment_offset % LP_SECTOR_SIZE != 0) {
        LERROR << "Alignment offset is not sector-aligned.";
        return false;
    }
    if (device_info_.alignment % LP_SECTOR_SIZE != 0) {
        LERROR << "Partition alignment is not sector-aligned.";
        return false;
    }
    if (device_info_.alignment_offset > device_info_.alignment) {
        LERROR << "Partition alignment offset is greater than its alignment.";
        return false;
    }
    device_info_ = device_info;

    // We reserve a geometry block (4KB) plus space for each copy of the
    // maximum size of a metadata blob. Then, we double that space since
@@ -158,20 +218,36 @@ bool MetadataBuilder::Init(uint64_t blockdevice_size, uint32_t metadata_max_size
    uint64_t reserved =
            LP_METADATA_GEOMETRY_SIZE + (uint64_t(metadata_max_size) * metadata_slot_count);
    uint64_t total_reserved = reserved * 2;

    if (blockdevice_size < total_reserved || blockdevice_size - total_reserved < LP_SECTOR_SIZE) {
    if (device_info_.size < total_reserved) {
        LERROR << "Attempting to create metadata on a block device that is too small.";
        return false;
    }

    // The last sector is inclusive. We subtract one to make sure that logical
    // partitions won't overlap with the same sector as the backup metadata,
    // which could happen if the block device was not aligned to LP_SECTOR_SIZE.
    geometry_.first_logical_sector = reserved / LP_SECTOR_SIZE;
    geometry_.last_logical_sector = ((blockdevice_size - reserved) / LP_SECTOR_SIZE) - 1;
    // Compute the first free sector, factoring in alignment.
    uint64_t free_area = AlignTo(reserved, device_info_.alignment, device_info_.alignment_offset);
    uint64_t first_sector = free_area / LP_SECTOR_SIZE;

    // Compute the last free sector, which is inclusive. We subtract 1 to make
    // sure that logical partitions won't overlap with the same sector as the
    // backup metadata, which could happen if the block device was not aligned
    // to LP_SECTOR_SIZE.
    uint64_t last_sector = ((device_info_.size - reserved) / LP_SECTOR_SIZE) - 1;

    // If this check fails, it means either (1) we did not have free space to
    // allocate a single sector, or (2) we did, but the alignment was high
    // enough to bump the first sector out of range. Either way, we cannot
    // continue.
    if (first_sector > last_sector) {
        LERROR << "Not enough space to allocate any partition tables.";
        return false;
    }

    geometry_.first_logical_sector = first_sector;
    geometry_.last_logical_sector = last_sector;
    geometry_.metadata_max_size = metadata_max_size;
    geometry_.metadata_slot_count = metadata_slot_count;
    DCHECK(geometry_.last_logical_sector >= geometry_.first_logical_sector);
    geometry_.alignment = device_info_.alignment;
    geometry_.alignment_offset = device_info_.alignment_offset;
    return true;
}

@@ -209,7 +285,7 @@ void MetadataBuilder::RemovePartition(const std::string& name) {

bool MetadataBuilder::GrowPartition(Partition* partition, uint64_t requested_size) {
    // Align the space needed up to the nearest sector.
    uint64_t aligned_size = AlignToSector(requested_size);
    uint64_t aligned_size = AlignTo(requested_size, LP_SECTOR_SIZE);
    if (partition->size() >= aligned_size) {
        return true;
    }
@@ -259,10 +335,16 @@ bool MetadataBuilder::GrowPartition(Partition* partition, uint64_t requested_siz
            continue;
        }

        uint64_t aligned = AlignSector(previous.end);
        if (aligned >= current.start) {
            // After alignment, this extent is not usable.
            continue;
        }

        // This gap is enough to hold the remainder of the space requested, so we
        // can allocate what we need and return.
        if (current.start - previous.end >= sectors_needed) {
            auto extent = std::make_unique<LinearExtent>(sectors_needed, previous.end);
        if (current.start - aligned >= sectors_needed) {
            auto extent = std::make_unique<LinearExtent>(sectors_needed, aligned);
            sectors_needed -= extent->num_sectors();
            new_extents.push_back(std::move(extent));
            break;
@@ -270,7 +352,7 @@ bool MetadataBuilder::GrowPartition(Partition* partition, uint64_t requested_siz

        // This gap is not big enough to fit the remainder of the space requested,
        // so consume the whole thing and keep looking for more.
        auto extent = std::make_unique<LinearExtent>(current.start - previous.end, previous.end);
        auto extent = std::make_unique<LinearExtent>(current.start - aligned, aligned);
        sectors_needed -= extent->num_sectors();
        new_extents.push_back(std::move(extent));
    }
@@ -286,8 +368,12 @@ bool MetadataBuilder::GrowPartition(Partition* partition, uint64_t requested_siz
        }
        DCHECK(first_sector <= geometry_.last_logical_sector);

        // Note: After alignment, |first_sector| may be > the last usable sector.
        first_sector = AlignSector(first_sector);

        // Note: the last usable sector is inclusive.
        if (geometry_.last_logical_sector + 1 - first_sector < sectors_needed) {
        if (first_sector > geometry_.last_logical_sector ||
            geometry_.last_logical_sector + 1 - first_sector < sectors_needed) {
            LERROR << "Not enough free space to expand partition: " << partition->name();
            return false;
        }
@@ -351,5 +437,26 @@ uint64_t MetadataBuilder::AllocatableSpace() const {
    return (geometry_.last_logical_sector - geometry_.first_logical_sector + 1) * LP_SECTOR_SIZE;
}

uint64_t MetadataBuilder::AlignSector(uint64_t sector) {
    // Note: when reading alignment info from the Kernel, we don't assume it
    // is aligned to the sector size, so we round up to the nearest sector.
    uint64_t lba = sector * LP_SECTOR_SIZE;
    uint64_t aligned = AlignTo(lba, device_info_.alignment, device_info_.alignment_offset);
    return AlignTo(aligned, LP_SECTOR_SIZE) / LP_SECTOR_SIZE;
}

void MetadataBuilder::set_block_device_info(const BlockDeviceInfo& device_info) {
    device_info_.size = device_info.size;

    // The kernel does not guarantee these values are present, so we only
    // replace existing values if the new values are non-zero.
    if (device_info.alignment) {
        device_info_.alignment = device_info.alignment;
    }
    if (device_info.alignment_offset) {
        device_info_.alignment_offset = device_info.alignment_offset;
    }
}

}  // namespace fs_mgr
}  // namespace android
+146 −4
Original line number Diff line number Diff line
@@ -16,6 +16,8 @@

#include <gtest/gtest.h>
#include <liblp/builder.h>
#include "fs_mgr.h"
#include "utility.h"

using namespace std;
using namespace android::fs_mgr;
@@ -127,6 +129,89 @@ TEST(liblp, MetadataAlignment) {
    EXPECT_EQ(exported->geometry.metadata_max_size, 1024);
}

TEST(liblp, InternalAlignment) {
    // Test the metadata fitting within alignment.
    BlockDeviceInfo device_info(1024 * 1024, 768 * 1024, 0);
    unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(device_info, 1024, 2);
    ASSERT_NE(builder, nullptr);
    unique_ptr<LpMetadata> exported = builder->Export();
    ASSERT_NE(exported, nullptr);
    EXPECT_EQ(exported->geometry.first_logical_sector, 1536);
    EXPECT_EQ(exported->geometry.last_logical_sector, 2035);

    // Test a large alignment offset thrown in.
    device_info.alignment_offset = 753664;
    builder = MetadataBuilder::New(device_info, 1024, 2);
    ASSERT_NE(builder, nullptr);
    exported = builder->Export();
    ASSERT_NE(exported, nullptr);
    EXPECT_EQ(exported->geometry.first_logical_sector, 1472);
    EXPECT_EQ(exported->geometry.last_logical_sector, 2035);

    // Test only an alignment offset (which should simply bump up the first
    // logical sector).
    device_info.alignment = 0;
    builder = MetadataBuilder::New(device_info, 1024, 2);
    ASSERT_NE(builder, nullptr);
    exported = builder->Export();
    ASSERT_NE(exported, nullptr);
    EXPECT_EQ(exported->geometry.first_logical_sector, 1484);
    EXPECT_EQ(exported->geometry.last_logical_sector, 2035);

    // Test a small alignment with an alignment offset.
    device_info.alignment = 12 * 1024;
    device_info.alignment_offset = 3 * 1024;
    builder = MetadataBuilder::New(device_info, 16 * 1024, 2);
    ASSERT_NE(builder, nullptr);
    exported = builder->Export();
    ASSERT_NE(exported, nullptr);
    EXPECT_EQ(exported->geometry.first_logical_sector, 78);
    EXPECT_EQ(exported->geometry.last_logical_sector, 1975);

    // Test a small alignment with no alignment offset.
    device_info.alignment = 11 * 1024;
    builder = MetadataBuilder::New(device_info, 16 * 1024, 2);
    ASSERT_NE(builder, nullptr);
    exported = builder->Export();
    ASSERT_NE(exported, nullptr);
    EXPECT_EQ(exported->geometry.first_logical_sector, 72);
    EXPECT_EQ(exported->geometry.last_logical_sector, 1975);
}

TEST(liblp, InternalPartitionAlignment) {
    BlockDeviceInfo device_info(512 * 1024 * 1024, 768 * 1024, 753664);
    unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(device_info, 32 * 1024, 2);

    Partition* a = builder->AddPartition("a", TEST_GUID, 0);
    ASSERT_NE(a, nullptr);
    Partition* b = builder->AddPartition("b", TEST_GUID2, 0);
    ASSERT_NE(b, nullptr);

    // Add a bunch of small extents to each, interleaving.
    for (size_t i = 0; i < 10; i++) {
        ASSERT_TRUE(builder->GrowPartition(a, a->size() + 4096));
        ASSERT_TRUE(builder->GrowPartition(b, b->size() + 4096));
    }
    EXPECT_EQ(a->size(), 40960);
    EXPECT_EQ(b->size(), 40960);

    unique_ptr<LpMetadata> exported = builder->Export();
    ASSERT_NE(exported, nullptr);

    // Check that each starting sector is aligned.
    for (const auto& extent : exported->extents) {
        ASSERT_EQ(extent.target_type, LP_TARGET_TYPE_LINEAR);
        EXPECT_EQ(extent.num_sectors, 8);

        uint64_t lba = extent.target_data * LP_SECTOR_SIZE;
        uint64_t aligned_lba = AlignTo(lba, device_info.alignment, device_info.alignment_offset);
        EXPECT_EQ(lba, aligned_lba);
    }

    // Sanity check one extent.
    EXPECT_EQ(exported->extents.back().target_data, 30656);
}

TEST(liblp, UseAllDiskSpace) {
    unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(1024 * 1024, 1024, 2);
    EXPECT_EQ(builder->AllocatableSpace(), 1036288);
@@ -312,15 +397,72 @@ TEST(liblp, MetadataTooLarge) {
    static const size_t kMetadataSize = 64 * 1024;

    // No space to store metadata + geometry.
    unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(kDiskSize, kMetadataSize, 1);
    BlockDeviceInfo device_info(kDiskSize, 0, 0);
    unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(device_info, kMetadataSize, 1);
    EXPECT_EQ(builder, nullptr);

    // No space to store metadata + geometry + one free sector.
    builder = MetadataBuilder::New(kDiskSize + LP_METADATA_GEOMETRY_SIZE * 2, kMetadataSize, 1);
    device_info.size += LP_METADATA_GEOMETRY_SIZE * 2;
    builder = MetadataBuilder::New(device_info, kMetadataSize, 1);
    EXPECT_EQ(builder, nullptr);

    // Space for metadata + geometry + one free sector.
    builder = MetadataBuilder::New(kDiskSize + LP_METADATA_GEOMETRY_SIZE * 2 + LP_SECTOR_SIZE,
                                   kMetadataSize, 1);
    device_info.size += LP_SECTOR_SIZE;
    builder = MetadataBuilder::New(device_info, kMetadataSize, 1);
    EXPECT_NE(builder, nullptr);

    // Test with alignment.
    device_info.alignment = 131072;
    builder = MetadataBuilder::New(device_info, kMetadataSize, 1);
    EXPECT_EQ(builder, nullptr);

    device_info.alignment = 0;
    device_info.alignment_offset = 32768 - LP_SECTOR_SIZE;
    builder = MetadataBuilder::New(device_info, kMetadataSize, 1);
    EXPECT_EQ(builder, nullptr);
}

TEST(liblp, block_device_info) {
    std::unique_ptr<fstab, decltype(&fs_mgr_free_fstab)> fstab(fs_mgr_read_fstab_default(),
                                                               fs_mgr_free_fstab);
    ASSERT_NE(fstab, nullptr);

    // This should read from the "super" partition once we have a well-defined
    // way to access it.
    struct fstab_rec* rec = fs_mgr_get_entry_for_mount_point(fstab.get(), "/data");
    ASSERT_NE(rec, nullptr);

    BlockDeviceInfo device_info;
    ASSERT_TRUE(GetBlockDeviceInfo(rec->blk_device, &device_info));

    // Sanity check that the device doesn't give us some weird inefficient
    // alignment.
    ASSERT_EQ(device_info.alignment % LP_SECTOR_SIZE, 0);
    ASSERT_EQ(device_info.alignment_offset % LP_SECTOR_SIZE, 0);
    ASSERT_LE(device_info.alignment_offset, INT_MAX);

    // Having an alignment offset > alignment doesn't really make sense.
    ASSERT_LT(device_info.alignment_offset, device_info.alignment);
}

TEST(liblp, UpdateBlockDeviceInfo) {
    BlockDeviceInfo device_info(1024 * 1024, 4096, 1024);
    unique_ptr<MetadataBuilder> builder = MetadataBuilder::New(device_info, 1024, 1);
    ASSERT_NE(builder, nullptr);

    EXPECT_EQ(builder->block_device_info().size, device_info.size);
    EXPECT_EQ(builder->block_device_info().alignment, device_info.alignment);
    EXPECT_EQ(builder->block_device_info().alignment_offset, device_info.alignment_offset);

    device_info.alignment = 0;
    device_info.alignment_offset = 2048;
    builder->set_block_device_info(device_info);
    EXPECT_EQ(builder->block_device_info().alignment, 4096);
    EXPECT_EQ(builder->block_device_info().alignment_offset, device_info.alignment_offset);

    device_info.alignment = 8192;
    device_info.alignment_offset = 0;
    builder->set_block_device_info(device_info);
    EXPECT_EQ(builder->block_device_info().alignment, 8192);
    EXPECT_EQ(builder->block_device_info().alignment_offset, 2048);
}
+47 −2
Original line number Diff line number Diff line
@@ -30,6 +30,24 @@ namespace fs_mgr {

class LinearExtent;

// By default, partitions are aligned on a 1MiB boundary.
static const uint32_t kDefaultPartitionAlignment = 1024 * 1024;

struct BlockDeviceInfo {
    BlockDeviceInfo() : size(0), alignment(0), alignment_offset(0) {}
    BlockDeviceInfo(uint64_t size, uint32_t alignment, uint32_t alignment_offset)
        : size(size), alignment(alignment), alignment_offset(alignment_offset) {}
    // Size of the block device, in bytes.
    uint64_t size;
    // Optimal target alignment, in bytes. Partition extents will be aligned to
    // this value by default. This value must be 0 or a multiple of 512.
    uint32_t alignment;
    // Alignment offset to parent device (if any), in bytes. The sector at
    // |alignment_offset| on the target device is correctly aligned on its
    // parent device. This value must be 0 or a multiple of 512.
    uint32_t alignment_offset;
};

// Abstraction around dm-targets that can be encoded into logical partition tables.
class Extent {
  public:
@@ -107,14 +125,29 @@ class MetadataBuilder {
    // If the parameters would yield invalid metadata, nullptr is returned. This
    // could happen if the block device size is too small to store the metadata
    // and backup copies.
    static std::unique_ptr<MetadataBuilder> New(uint64_t blockdevice_size,
    static std::unique_ptr<MetadataBuilder> New(const BlockDeviceInfo& device_info,
                                                uint32_t metadata_max_size,
                                                uint32_t metadata_slot_count);

    // Import an existing table for modification. This reads metadata off the
    // given block device and imports it. It also adjusts alignment information
    // based on run-time values in the operating system.
    static std::unique_ptr<MetadataBuilder> New(const std::string& block_device,
                                                uint32_t slot_number);

    // Import an existing table for modification. If the table is not valid, for
    // example it contains duplicate partition names, then nullptr is returned.
    // This method is for testing or changing off-line tables.
    static std::unique_ptr<MetadataBuilder> New(const LpMetadata& metadata);

    // Wrapper around New() with a BlockDeviceInfo that only specifies a device
    // size. This is a convenience method for tests.
    static std::unique_ptr<MetadataBuilder> New(uint64_t blockdev_size, uint32_t metadata_max_size,
                                                uint32_t metadata_slot_count) {
        BlockDeviceInfo device_info(blockdev_size, 0, 0);
        return New(device_info, metadata_max_size, metadata_slot_count);
    }

    // Export metadata so it can be serialized to an image, to disk, or mounted
    // via device-mapper.
    std::unique_ptr<LpMetadata> Export();
@@ -156,16 +189,28 @@ class MetadataBuilder {
    // Amount of space that can be allocated to logical partitions.
    uint64_t AllocatableSpace() const;

    // Merge new block device information into previous values. Alignment values
    // are only overwritten if the new values are non-zero.
    void set_block_device_info(const BlockDeviceInfo& device_info);
    const BlockDeviceInfo& block_device_info() const { return device_info_; }

  private:
    MetadataBuilder();
    bool Init(uint64_t blockdevice_size, uint32_t metadata_max_size, uint32_t metadata_slot_count);
    bool Init(const BlockDeviceInfo& info, uint32_t metadata_max_size, uint32_t metadata_slot_count);
    bool Init(const LpMetadata& metadata);

    uint64_t AlignSector(uint64_t sector);

    LpMetadataGeometry geometry_;
    LpMetadataHeader header_;
    std::vector<std::unique_ptr<Partition>> partitions_;
    BlockDeviceInfo device_info_;
};

// Read BlockDeviceInfo for a given block device. This always returns false
// for non-Linux operating systems.
bool GetBlockDeviceInfo(const std::string& block_device, BlockDeviceInfo* device_info);

}  // namespace fs_mgr
}  // namespace android

+22 −0
Original line number Diff line number Diff line
@@ -107,6 +107,28 @@ typedef struct LpMetadataGeometry {
     * backup geometry block at the very end.
     */
    uint64_t last_logical_sector;

    /* 64: Alignment for defining partitions or partition extents. For example,
     * an alignment of 1MiB will require that all partitions have a size evenly
     * divisible by 1MiB, and that the smallest unit the partition can grow by
     * is 1MiB.
     *
     * Alignment is normally determined at runtime when growing or adding
     * partitions. If for some reason the alignment cannot be determined, then
     * this predefined alignment in the geometry is used instead. By default
     * it is set to 1MiB.
     */
    uint32_t alignment;

    /* 68: Alignment offset for "stacked" devices. For example, if the "super"
     * partition itself is not aligned within the parent block device's
     * partition table, then we adjust for this in deciding where to place
     * |first_logical_sector|.
     *
     * Similar to |alignment|, this will be derived from the operating system.
     * If it cannot be determined, it is assumed to be 0.
     */
    uint32_t alignment_offset;
} __attribute__((packed)) LpMetadataGeometry;

/* The logical partition metadata has a number of tables; they are described
Loading