Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 5c57818f authored by David Gross's avatar David Gross Committed by android-build-merger
Browse files

Merge "Add validation tests for consistency of model inputs and outputs." into pi-dev

am: fac7bca3

Change-Id: Ia14d3452746a21ec47a4d2836b17627c2afa83a1
parents 85518c4b fac7bca3
Loading
Loading
Loading
Loading
+163 −0
Original line number Original line Diff line number Diff line
@@ -286,6 +286,169 @@ TEST_F(NeuralnetworksHidlTest, SimpleExecuteGraphNegativeTest2) {
    EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
    EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, executionReturnStatus);
}
}


class NeuralnetworksInputsOutputsTest
    : public NeuralnetworksHidlTest,
      public ::testing::WithParamInterface<std::tuple<bool, bool>> {
   protected:
    virtual void SetUp() { NeuralnetworksHidlTest::SetUp(); }
    virtual void TearDown() { NeuralnetworksHidlTest::TearDown(); }
    V1_1::Model createModel(const std::vector<uint32_t>& inputs,
                            const std::vector<uint32_t>& outputs) {
        // We set up the operands as floating-point with no designated
        // model inputs and outputs, and then patch type and lifetime
        // later on in this function.

        std::vector<Operand> operands = {
            {
                .type = OperandType::TENSOR_FLOAT32,
                .dimensions = {1},
                .numberOfConsumers = 1,
                .scale = 0.0f,
                .zeroPoint = 0,
                .lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
                .location = {.poolIndex = 0, .offset = 0, .length = 0},
            },
            {
                .type = OperandType::TENSOR_FLOAT32,
                .dimensions = {1},
                .numberOfConsumers = 1,
                .scale = 0.0f,
                .zeroPoint = 0,
                .lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
                .location = {.poolIndex = 0, .offset = 0, .length = 0},
            },
            {
                .type = OperandType::INT32,
                .dimensions = {},
                .numberOfConsumers = 1,
                .scale = 0.0f,
                .zeroPoint = 0,
                .lifetime = OperandLifeTime::CONSTANT_COPY,
                .location = {.poolIndex = 0, .offset = 0, .length = sizeof(int32_t)},
            },
            {
                .type = OperandType::TENSOR_FLOAT32,
                .dimensions = {1},
                .numberOfConsumers = 0,
                .scale = 0.0f,
                .zeroPoint = 0,
                .lifetime = OperandLifeTime::TEMPORARY_VARIABLE,
                .location = {.poolIndex = 0, .offset = 0, .length = 0},
            },
        };

        const std::vector<Operation> operations = {{
            .type = OperationType::ADD, .inputs = {0, 1, 2}, .outputs = {3},
        }};

        std::vector<uint8_t> operandValues;
        int32_t activation[1] = {static_cast<int32_t>(FusedActivationFunc::NONE)};
        operandValues.insert(operandValues.end(), reinterpret_cast<const uint8_t*>(&activation[0]),
                             reinterpret_cast<const uint8_t*>(&activation[1]));

        if (kQuantized) {
            for (auto& operand : operands) {
                if (operand.type == OperandType::TENSOR_FLOAT32) {
                    operand.type = OperandType::TENSOR_QUANT8_ASYMM;
                    operand.scale = 1.0f;
                    operand.zeroPoint = 0;
                }
            }
        }

        auto patchLifetime = [&operands](const std::vector<uint32_t>& operandIndexes,
                                         OperandLifeTime lifetime) {
            for (uint32_t index : operandIndexes) {
                operands[index].lifetime = lifetime;
            }
        };
        if (kInputHasPrecedence) {
            patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
            patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
        } else {
            patchLifetime(inputs, OperandLifeTime::MODEL_INPUT);
            patchLifetime(outputs, OperandLifeTime::MODEL_OUTPUT);
        }

        return {
            .operands = operands,
            .operations = operations,
            .inputIndexes = inputs,
            .outputIndexes = outputs,
            .operandValues = operandValues,
            .pools = {},
        };
    }
    void check(const std::string& name,
               bool expectation,  // true = success
               const std::vector<uint32_t>& inputs, const std::vector<uint32_t>& outputs) {
        SCOPED_TRACE(name + " (HAL calls should " + (expectation ? "succeed" : "fail") + ", " +
                     (kInputHasPrecedence ? "input" : "output") + " precedence, " +
                     (kQuantized ? "quantized" : "float"));

        V1_1::Model model = createModel(inputs, outputs);

        // ensure that getSupportedOperations_1_1() checks model validity
        ErrorStatus supportedOpsErrorStatus = ErrorStatus::GENERAL_FAILURE;
        Return<void> supportedOpsReturn = device->getSupportedOperations_1_1(
            model, [&model, &supportedOpsErrorStatus](ErrorStatus status,
                                                      const hidl_vec<bool>& supported) {
                supportedOpsErrorStatus = status;
                if (status == ErrorStatus::NONE) {
                    ASSERT_EQ(supported.size(), model.operations.size());
                }
            });
        ASSERT_TRUE(supportedOpsReturn.isOk());
        ASSERT_EQ(supportedOpsErrorStatus,
                  (expectation ? ErrorStatus::NONE : ErrorStatus::INVALID_ARGUMENT));

        // ensure that prepareModel_1_1() checks model validity
        sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback;
        ASSERT_NE(preparedModelCallback.get(), nullptr);
        Return<ErrorStatus> prepareLaunchReturn =
            device->prepareModel_1_1(model, preparedModelCallback);
        ASSERT_TRUE(prepareLaunchReturn.isOk());
        ASSERT_TRUE(prepareLaunchReturn == ErrorStatus::NONE ||
                    prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT);
        bool preparationOk = (prepareLaunchReturn == ErrorStatus::NONE);
        if (preparationOk) {
            preparedModelCallback->wait();
            preparationOk = (preparedModelCallback->getStatus() == ErrorStatus::NONE);
        }

        if (preparationOk) {
            ASSERT_TRUE(expectation);
        } else {
            // Preparation can fail for reasons other than an invalid model --
            // for example, perhaps not all operations are supported, or perhaps
            // the device hit some kind of capacity limit.
            bool invalid = prepareLaunchReturn == ErrorStatus::INVALID_ARGUMENT ||
                           preparedModelCallback->getStatus() == ErrorStatus::INVALID_ARGUMENT;
            ASSERT_NE(expectation, invalid);
        }
    }

    // Indicates whether an operand that appears in both the inputs
    // and outputs vector should have lifetime appropriate for input
    // rather than for output.
    const bool kInputHasPrecedence = std::get<0>(GetParam());

    // Indicates whether we should test TENSOR_QUANT8_ASYMM rather
    // than TENSOR_FLOAT32.
    const bool kQuantized = std::get<1>(GetParam());
};

TEST_P(NeuralnetworksInputsOutputsTest, Validate) {
    check("Ok", true, {0, 1}, {3});
    check("InputIsOutput", false, {0, 1}, {3, 0});
    check("OutputIsInput", false, {0, 1, 3}, {3});
    check("DuplicateInputs", false, {0, 1, 0}, {3});
    check("DuplicateOutputs", false, {0, 1}, {3, 3});
}

INSTANTIATE_TEST_CASE_P(Flavor, NeuralnetworksInputsOutputsTest,
                        ::testing::Combine(::testing::Bool(), ::testing::Bool()));

}  // namespace functional
}  // namespace functional
}  // namespace vts
}  // namespace vts
}  // namespace V1_1
}  // namespace V1_1