Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 9430f9d3 authored by Chia-chi Yeh's avatar Chia-chi Yeh Committed by Android (Google) Code Review
Browse files

Merge "KeyStore: Update the parameters of generating master keys." into gingerbread

parents 91b0bc2a 25099762
Loading
Loading
Loading
Loading
+71 −24
Original line number Original line Diff line number Diff line
@@ -143,15 +143,20 @@ static void send_message(uint8_t *message, int length)
    send(the_socket, message, length, 0);
    send(the_socket, message, length, 0);
}
}


/* Here is the file format. Values are encrypted by AES CBC, and MD5 is used to
/* Here is the file format. There are two parts in blob.value, the secret and
 * compute their checksums. To make the files portable, the length is stored in
 * the description. The secret is stored in ciphertext, and its original size
 * network order. Note that the first four bytes are reserved for future use and
 * can be found in blob.length. The description is stored after the secret in
 * are always set to zero in this implementation. */
 * plaintext, and its size is specified in blob.info. The total size of the two
 * parts must be no more than VALUE_SIZE bytes. The first three bytes of the
 * file are reserved for future use and are always set to zero. Fields other
 * than blob.info, blob.length, and blob.value are modified by encrypt_blob()
 * and decrypt_blob(). Thus they should not be accessed from outside. */


static int the_entropy = -1;
static int the_entropy = -1;


static struct __attribute__((packed)) {
static struct __attribute__((packed)) {
    uint32_t reserved;
    uint8_t reserved[3];
    uint8_t info;
    uint8_t vector[AES_BLOCK_SIZE];
    uint8_t vector[AES_BLOCK_SIZE];
    uint8_t encrypted[0];
    uint8_t encrypted[0];
    uint8_t digest[MD5_DIGEST_LENGTH];
    uint8_t digest[MD5_DIGEST_LENGTH];
@@ -170,9 +175,13 @@ static int8_t encrypt_blob(char *name, AES_KEY *aes_key)
        return SYSTEM_ERROR;
        return SYSTEM_ERROR;
    }
    }


    length = blob.length + blob.value - blob.encrypted;
    length = blob.length + (blob.value - blob.encrypted);
    length = (length + AES_BLOCK_SIZE - 1) / AES_BLOCK_SIZE * AES_BLOCK_SIZE;
    length = (length + AES_BLOCK_SIZE - 1) / AES_BLOCK_SIZE * AES_BLOCK_SIZE;


    if (blob.info != 0) {
        memmove(&blob.encrypted[length], &blob.value[blob.length], blob.info);
    }

    blob.length = htonl(blob.length);
    blob.length = htonl(blob.length);
    MD5(blob.digested, length - (blob.digested - blob.encrypted), blob.digest);
    MD5(blob.digested, length - (blob.digested - blob.encrypted), blob.digest);


@@ -180,8 +189,8 @@ static int8_t encrypt_blob(char *name, AES_KEY *aes_key)
    AES_cbc_encrypt(blob.encrypted, blob.encrypted, length, aes_key, vector,
    AES_cbc_encrypt(blob.encrypted, blob.encrypted, length, aes_key, vector,
                    AES_ENCRYPT);
                    AES_ENCRYPT);


    blob.reserved = 0;
    memset(blob.reserved, 0, sizeof(blob.reserved));
    length += blob.encrypted - (uint8_t *)&blob;
    length += (blob.encrypted - (uint8_t *)&blob) + blob.info;


    fd = open(".tmp", O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR);
    fd = open(".tmp", O_WRONLY | O_TRUNC | O_CREAT, S_IRUSR | S_IWUSR);
    length -= write(fd, &blob, length);
    length -= write(fd, &blob, length);
@@ -200,7 +209,7 @@ static int8_t decrypt_blob(char *name, AES_KEY *aes_key)
    length = read(fd, &blob, sizeof(blob));
    length = read(fd, &blob, sizeof(blob));
    close(fd);
    close(fd);


    length -= blob.encrypted - (uint8_t *)&blob;
    length -= (blob.encrypted - (uint8_t *)&blob) + blob.info;
    if (length < blob.value - blob.encrypted || length % AES_BLOCK_SIZE != 0) {
    if (length < blob.value - blob.encrypted || length % AES_BLOCK_SIZE != 0) {
        return VALUE_CORRUPTED;
        return VALUE_CORRUPTED;
    }
    }
@@ -215,8 +224,13 @@ static int8_t decrypt_blob(char *name, AES_KEY *aes_key)


    length -= blob.value - blob.digested;
    length -= blob.value - blob.digested;
    blob.length = ntohl(blob.length);
    blob.length = ntohl(blob.length);
    return (blob.length < 0 || blob.length > length) ? VALUE_CORRUPTED :
    if (blob.length < 0 || blob.length > length) {
           NO_ERROR;
        return VALUE_CORRUPTED;
    }
    if (blob.info != 0) {
        memmove(&blob.value[blob.length], &blob.value[length], blob.info);
    }
    return NO_ERROR;
}
}


/* Here are the actions. Each of them is a function without arguments. All
/* Here are the actions. Each of them is a function without arguments. All
@@ -266,6 +280,7 @@ static int8_t insert()
    char name[NAME_MAX];
    char name[NAME_MAX];
    int n = sprintf(name, "%u_", uid);
    int n = sprintf(name, "%u_", uid);
    encode_key(&name[n], params[0].value, params[0].length);
    encode_key(&name[n], params[0].value, params[0].length);
    blob.info = 0;
    blob.length = params[1].length;
    blob.length = params[1].length;
    memcpy(blob.value, params[1].value, params[1].length);
    memcpy(blob.value, params[1].value, params[1].length);
    return encrypt_blob(name, &encryption_key);
    return encrypt_blob(name, &encryption_key);
@@ -336,56 +351,88 @@ static int8_t reset()


#define MASTER_KEY_FILE ".masterkey"
#define MASTER_KEY_FILE ".masterkey"
#define MASTER_KEY_SIZE 16
#define MASTER_KEY_SIZE 16
#define SALT_SIZE       16


static void generate_key(uint8_t *key, uint8_t *password, int length)
static void set_key(uint8_t *key, uint8_t *password, int length, uint8_t *salt)
{
{
    if (salt) {
        PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, salt, SALT_SIZE,
                               8192, MASTER_KEY_SIZE, key);
    } else {
        PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, (uint8_t *)"keystore",
        PKCS5_PBKDF2_HMAC_SHA1((char *)password, length, (uint8_t *)"keystore",
                               sizeof("keystore"), 1024, MASTER_KEY_SIZE, key);
                               sizeof("keystore"), 1024, MASTER_KEY_SIZE, key);
    }
    }
}

/* Here is the history. To improve the security, the parameters to generate the
 * master key has been changed. To make a seamless transition, we update the
 * file using the same password when the user unlock it for the first time. If
 * any thing goes wrong during the transition, the new file will not overwrite
 * the old one. This avoids permanent damages of the existing data. */


static int8_t password()
static int8_t password()
{
{
    uint8_t key[MASTER_KEY_SIZE];
    uint8_t key[MASTER_KEY_SIZE];
    AES_KEY aes_key;
    AES_KEY aes_key;
    int n;
    int8_t response = SYSTEM_ERROR;


    if (state == UNINITIALIZED) {
    if (state == UNINITIALIZED) {
        blob.length = MASTER_KEY_SIZE;
        if (read(the_entropy, blob.value, MASTER_KEY_SIZE) != MASTER_KEY_SIZE) {
        if (read(the_entropy, blob.value, MASTER_KEY_SIZE) != MASTER_KEY_SIZE) {
           return SYSTEM_ERROR;
           return SYSTEM_ERROR;
        }
        }
    } else {
    } else {
        generate_key(key, params[0].value, params[0].length);
        int fd = open(MASTER_KEY_FILE, O_RDONLY);
        uint8_t *salt = NULL;
        if (fd != -1) {
            int length = read(fd, &blob, sizeof(blob));
            close(fd);
            if (length > SALT_SIZE && blob.info == SALT_SIZE) {
                salt = (uint8_t *)&blob + length - SALT_SIZE;
            }
        }

        set_key(key, params[0].value, params[0].length, salt);
        AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key);
        AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key);
        n = decrypt_blob(MASTER_KEY_FILE, &aes_key);
        response = decrypt_blob(MASTER_KEY_FILE, &aes_key);
        if (n == SYSTEM_ERROR) {
        if (response == SYSTEM_ERROR) {
            return SYSTEM_ERROR;
            return SYSTEM_ERROR;
        }
        }
        if (n != NO_ERROR || blob.length != MASTER_KEY_SIZE) {
        if (response != NO_ERROR || blob.length != MASTER_KEY_SIZE) {
            if (retry <= 0) {
            if (retry <= 0) {
                reset();
                reset();
                return UNINITIALIZED;
                return UNINITIALIZED;
            }
            }
            return WRONG_PASSWORD + --retry;
            return WRONG_PASSWORD + --retry;
        }
        }

        if (!salt && params[1].length == -1) {
            params[1] = params[0];
        }
    }
    }


    if (params[1].length == -1) {
    if (params[1].length == -1) {
        memcpy(key, blob.value, MASTER_KEY_SIZE);
        memcpy(key, blob.value, MASTER_KEY_SIZE);
    } else {
    } else {
        generate_key(key, params[1].value, params[1].length);
        uint8_t *salt = &blob.value[MASTER_KEY_SIZE];
        if (read(the_entropy, salt, SALT_SIZE) != SALT_SIZE) {
            return SYSTEM_ERROR;
        }

        set_key(key, params[1].value, params[1].length, salt);
        AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key);
        AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &aes_key);
        memcpy(key, blob.value, MASTER_KEY_SIZE);
        memcpy(key, blob.value, MASTER_KEY_SIZE);
        n = encrypt_blob(MASTER_KEY_FILE, &aes_key);
        blob.info = SALT_SIZE;
        blob.length = MASTER_KEY_SIZE;
        response = encrypt_blob(MASTER_KEY_FILE, &aes_key);
    }
    }


    if (n == NO_ERROR) {
    if (response == NO_ERROR) {
        AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &encryption_key);
        AES_set_encrypt_key(key, MASTER_KEY_SIZE * 8, &encryption_key);
        AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &decryption_key);
        AES_set_decrypt_key(key, MASTER_KEY_SIZE * 8, &decryption_key);
        state = NO_ERROR;
        state = NO_ERROR;
        retry = MAX_RETRY;
        retry = MAX_RETRY;
    }
    }
    return n;
    return response;
}
}


static int8_t lock()
static int8_t lock()