Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 2fd6baef authored by Jeff Brown's avatar Jeff Brown Committed by Android Git Automerger
Browse files

am 18f329e9: Implement a weighted least squares VelocityTracker strategy.

* commit '18f329e9':
  Implement a weighted least squares VelocityTracker strategy.
parents 524d8ee8 18f329e9
Loading
Loading
Loading
Loading
+19 −1
Original line number Diff line number Diff line
@@ -138,8 +138,23 @@ public:
 */
class LeastSquaresVelocityTrackerStrategy : public VelocityTrackerStrategy {
public:
    enum Weighting {
        // No weights applied.  All data points are equally reliable.
        WEIGHTING_NONE,

        // Weight by time delta.  Data points clustered together are weighted less.
        WEIGHTING_DELTA,

        // Weight such that points within a certain horizon are weighed more than those
        // outside of that horizon.
        WEIGHTING_CENTRAL,

        // Weight such that points older than a certain amount are weighed less.
        WEIGHTING_RECENT,
    };

    // Degree must be no greater than Estimator::MAX_DEGREE.
    LeastSquaresVelocityTrackerStrategy(uint32_t degree);
    LeastSquaresVelocityTrackerStrategy(uint32_t degree, Weighting weighting = WEIGHTING_NONE);
    virtual ~LeastSquaresVelocityTrackerStrategy();

    virtual void clear();
@@ -167,7 +182,10 @@ private:
        }
    };

    float chooseWeight(uint32_t index) const;

    const uint32_t mDegree;
    const Weighting mWeighting;
    uint32_t mIndex;
    Movement mMovements[HISTORY_SIZE];
};
+126 −21
Original line number Diff line number Diff line
@@ -161,6 +161,21 @@ VelocityTrackerStrategy* VelocityTracker::createStrategy(const char* strategy) {
        // of the velocity when the finger is released.
        return new LeastSquaresVelocityTrackerStrategy(3);
    }
    if (!strcmp("wlsq2-delta", strategy)) {
        // 2nd order weighted least squares, delta weighting.  Quality: EXPERIMENTAL
        return new LeastSquaresVelocityTrackerStrategy(2,
                LeastSquaresVelocityTrackerStrategy::WEIGHTING_DELTA);
    }
    if (!strcmp("wlsq2-central", strategy)) {
        // 2nd order weighted least squares, central weighting.  Quality: EXPERIMENTAL
        return new LeastSquaresVelocityTrackerStrategy(2,
                LeastSquaresVelocityTrackerStrategy::WEIGHTING_CENTRAL);
    }
    if (!strcmp("wlsq2-recent", strategy)) {
        // 2nd order weighted least squares, recent weighting.  Quality: EXPERIMENTAL
        return new LeastSquaresVelocityTrackerStrategy(2,
                LeastSquaresVelocityTrackerStrategy::WEIGHTING_RECENT);
    }
    if (!strcmp("int1", strategy)) {
        // 1st order integrating filter.  Quality: GOOD.
        // Not as good as 'lsq2' because it cannot estimate acceleration but it is
@@ -327,8 +342,9 @@ bool VelocityTracker::getEstimator(uint32_t id, Estimator* outEstimator) const {
const nsecs_t LeastSquaresVelocityTrackerStrategy::HORIZON;
const uint32_t LeastSquaresVelocityTrackerStrategy::HISTORY_SIZE;

LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(uint32_t degree) :
        mDegree(degree) {
LeastSquaresVelocityTrackerStrategy::LeastSquaresVelocityTrackerStrategy(
        uint32_t degree, Weighting weighting) :
        mDegree(degree), mWeighting(weighting) {
    clear();
}

@@ -366,10 +382,23 @@ void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet3
 *
 * Returns true if a solution is found, false otherwise.
 *
 * The input consists of two vectors of data points X and Y with indices 0..m-1.
 * The input consists of two vectors of data points X and Y with indices 0..m-1
 * along with a weight vector W of the same size.
 *
 * The output is a vector B with indices 0..n that describes a polynomial
 * that fits the data, such the sum of abs(Y[i] - (B[0] + B[1] X[i] + B[2] X[i]^2 ... B[n] X[i]^n))
 * for all i between 0 and m-1 is minimized.
 * that fits the data, such the sum of W[i] * W[i] * abs(Y[i] - (B[0] + B[1] X[i]
 * + B[2] X[i]^2 ... B[n] X[i]^n)) for all i between 0 and m-1 is minimized.
 *
 * Accordingly, the weight vector W should be initialized by the caller with the
 * reciprocal square root of the variance of the error in each input data point.
 * In other words, an ideal choice for W would be W[i] = 1 / var(Y[i]) = 1 / stddev(Y[i]).
 * The weights express the relative importance of each data point.  If the weights are
 * all 1, then the data points are considered to be of equal importance when fitting
 * the polynomial.  It is a good idea to choose weights that diminish the importance
 * of data points that may have higher than usual error margins.
 *
 * Errors among data points are assumed to be independent.  W is represented here
 * as a vector although in the literature it is typically taken to be a diagonal matrix.
 *
 * That is to say, the function that generated the input data can be approximated
 * by y(x) ~= B[0] + B[1] x + B[2] x^2 + ... + B[n] x^n.
@@ -379,14 +408,15 @@ void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet3
 * indicates perfect correspondence.
 *
 * This function first expands the X vector to a m by n matrix A such that
 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n.
 * A[i][0] = 1, A[i][1] = X[i], A[i][2] = X[i]^2, ..., A[i][n] = X[i]^n, then
 * multiplies it by w[i]./
 *
 * Then it calculates the QR decomposition of A yielding an m by m orthonormal matrix Q
 * and an m by n upper triangular matrix R.  Because R is upper triangular (lower
 * part is all zeroes), we can simplify the decomposition into an m by n matrix
 * Q1 and a n by n matrix R1 such that A = Q1 R1.
 *
 * Finally we solve the system of linear equations given by R1 B = (Qtranspose Y)
 * Finally we solve the system of linear equations given by R1 B = (Qtranspose W Y)
 * to find B.
 *
 * For efficiency, we lay out A and Q column-wise in memory because we frequently
@@ -395,17 +425,18 @@ void LeastSquaresVelocityTrackerStrategy::addMovement(nsecs_t eventTime, BitSet3
 * http://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
 * http://en.wikipedia.org/wiki/Gram-Schmidt
 */
static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32_t n,
        float* outB, float* outDet) {
static bool solveLeastSquares(const float* x, const float* y,
        const float* w, uint32_t m, uint32_t n, float* outB, float* outDet) {
#if DEBUG_STRATEGY
    ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s", int(m), int(n),
            vectorToString(x, m).string(), vectorToString(y, m).string());
    ALOGD("solveLeastSquares: m=%d, n=%d, x=%s, y=%s, w=%s", int(m), int(n),
            vectorToString(x, m).string(), vectorToString(y, m).string(),
            vectorToString(w, m).string());
#endif

    // Expand the X vector to a matrix A.
    // Expand the X vector to a matrix A, pre-multiplied by the weights.
    float a[n][m]; // column-major order
    for (uint32_t h = 0; h < m; h++) {
        a[0][h] = 1;
        a[0][h] = w[h];
        for (uint32_t i = 1; i < n; i++) {
            a[i][h] = a[i - 1][h] * x[h];
        }
@@ -462,10 +493,14 @@ static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32
    ALOGD("  - qr=%s", matrixToString(&qr[0][0], m, n, false /*rowMajor*/).string());
#endif

    // Solve R B = Qt Y to find B.  This is easy because R is upper triangular.
    // Solve R B = Qt W Y to find B.  This is easy because R is upper triangular.
    // We just work from bottom-right to top-left calculating B's coefficients.
    float wy[m];
    for (uint32_t h = 0; h < m; h++) {
        wy[h] = y[h] * w[h];
    }
    for (uint32_t i = n; i-- != 0; ) {
        outB[i] = vectorDot(&q[i][0], y, m);
        outB[i] = vectorDot(&q[i][0], wy, m);
        for (uint32_t j = n - 1; j > i; j--) {
            outB[i] -= r[i][j] * outB[j];
        }
@@ -476,8 +511,9 @@ static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32
#endif

    // Calculate the coefficient of determination as 1 - (SSerr / SStot) where
    // SSerr is the residual sum of squares (squared variance of the error),
    // and SStot is the total sum of squares (squared variance of the data).
    // SSerr is the residual sum of squares (variance of the error),
    // and SStot is the total sum of squares (variance of the data) where each
    // has been weighted.
    float ymean = 0;
    for (uint32_t h = 0; h < m; h++) {
        ymean += y[h];
@@ -493,9 +529,9 @@ static bool solveLeastSquares(const float* x, const float* y, uint32_t m, uint32
            term *= x[h];
            err -= term * outB[i];
        }
        sserr += err * err;
        sserr += w[h] * w[h] * err * err;
        float var = y[h] - ymean;
        sstot += var * var;
        sstot += w[h] * w[h] * var * var;
    }
    *outDet = sstot > 0.000001f ? 1.0f - (sserr / sstot) : 1;
#if DEBUG_STRATEGY
@@ -513,6 +549,7 @@ bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
    // Iterate over movement samples in reverse time order and collect samples.
    float x[HISTORY_SIZE];
    float y[HISTORY_SIZE];
    float w[HISTORY_SIZE];
    float time[HISTORY_SIZE];
    uint32_t m = 0;
    uint32_t index = mIndex;
@@ -531,6 +568,7 @@ bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
        const VelocityTracker::Position& position = movement.getPosition(id);
        x[m] = position.x;
        y[m] = position.y;
        w[m] = chooseWeight(index);
        time[m] = -age * 0.000000001f;
        index = (index == 0 ? HISTORY_SIZE : index) - 1;
    } while (++m < HISTORY_SIZE);
@@ -547,8 +585,8 @@ bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
    if (degree >= 1) {
        float xdet, ydet;
        uint32_t n = degree + 1;
        if (solveLeastSquares(time, x, m, n, outEstimator->xCoeff, &xdet)
                && solveLeastSquares(time, y, m, n, outEstimator->yCoeff, &ydet)) {
        if (solveLeastSquares(time, x, w, m, n, outEstimator->xCoeff, &xdet)
                && solveLeastSquares(time, y, w, m, n, outEstimator->yCoeff, &ydet)) {
            outEstimator->time = newestMovement.eventTime;
            outEstimator->degree = degree;
            outEstimator->confidence = xdet * ydet;
@@ -572,6 +610,73 @@ bool LeastSquaresVelocityTrackerStrategy::getEstimator(uint32_t id,
    return true;
}

float LeastSquaresVelocityTrackerStrategy::chooseWeight(uint32_t index) const {
    switch (mWeighting) {
    case WEIGHTING_DELTA: {
        // Weight points based on how much time elapsed between them and the next
        // point so that points that "cover" a shorter time span are weighed less.
        //   delta  0ms: 0.5
        //   delta 10ms: 1.0
        if (index == mIndex) {
            return 1.0f;
        }
        uint32_t nextIndex = (index + 1) % HISTORY_SIZE;
        float deltaMillis = (mMovements[nextIndex].eventTime- mMovements[index].eventTime)
                * 0.000001f;
        if (deltaMillis < 0) {
            return 0.5f;
        }
        if (deltaMillis < 10) {
            return 0.5f + deltaMillis * 0.05;
        }
        return 1.0f;
    }

    case WEIGHTING_CENTRAL: {
        // Weight points based on their age, weighing very recent and very old points less.
        //   age  0ms: 0.5
        //   age 10ms: 1.0
        //   age 50ms: 1.0
        //   age 60ms: 0.5
        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
                * 0.000001f;
        if (ageMillis < 0) {
            return 0.5f;
        }
        if (ageMillis < 10) {
            return 0.5f + ageMillis * 0.05;
        }
        if (ageMillis < 50) {
            return 1.0f;
        }
        if (ageMillis < 60) {
            return 0.5f + (60 - ageMillis) * 0.05;
        }
        return 0.5f;
    }

    case WEIGHTING_RECENT: {
        // Weight points based on their age, weighing older points less.
        //   age   0ms: 1.0
        //   age  50ms: 1.0
        //   age 100ms: 0.5
        float ageMillis = (mMovements[mIndex].eventTime - mMovements[index].eventTime)
                * 0.000001f;
        if (ageMillis < 50) {
            return 1.0f;
        }
        if (ageMillis < 100) {
            return 0.5f + (100 - ageMillis) * 0.01f;
        }
        return 0.5f;
    }

    case WEIGHTING_NONE:
    default:
        return 1.0f;
    }
}


// --- IntegratingVelocityTrackerStrategy ---