Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 98edb6ca authored by Linus Torvalds's avatar Linus Torvalds
Browse files

Merge branch 'kvm-updates/2.6.35' of git://git.kernel.org/pub/scm/virt/kvm/kvm

* 'kvm-updates/2.6.35' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (269 commits)
  KVM: x86: Add missing locking to arch specific vcpu ioctls
  KVM: PPC: Add missing vcpu_load()/vcpu_put() in vcpu ioctls
  KVM: MMU: Segregate shadow pages with different cr0.wp
  KVM: x86: Check LMA bit before set_efer
  KVM: Don't allow lmsw to clear cr0.pe
  KVM: Add cpuid.txt file
  KVM: x86: Tell the guest we'll warn it about tsc stability
  x86, paravirt: don't compute pvclock adjustments if we trust the tsc
  x86: KVM guest: Try using new kvm clock msrs
  KVM: x86: export paravirtual cpuid flags in KVM_GET_SUPPORTED_CPUID
  KVM: x86: add new KVMCLOCK cpuid feature
  KVM: x86: change msr numbers for kvmclock
  x86, paravirt: Add a global synchronization point for pvclock
  x86, paravirt: Enable pvclock flags in vcpu_time_info structure
  KVM: x86: Inject #GP with the right rip on efer writes
  KVM: SVM: Don't allow nested guest to VMMCALL into host
  KVM: x86: Fix exception reinjection forced to true
  KVM: Fix wallclock version writing race
  KVM: MMU: Don't read pdptrs with mmu spinlock held in mmu_alloc_roots
  KVM: VMX: enable VMXON check with SMX enabled (Intel TXT)
  ...
parents a8251096 8fbf065d
Loading
Loading
Loading
Loading
+206 −2
Original line number Original line Diff line number Diff line
@@ -656,6 +656,7 @@ struct kvm_clock_data {
4.29 KVM_GET_VCPU_EVENTS
4.29 KVM_GET_VCPU_EVENTS


Capability: KVM_CAP_VCPU_EVENTS
Capability: KVM_CAP_VCPU_EVENTS
Extended by: KVM_CAP_INTR_SHADOW
Architectures: x86
Architectures: x86
Type: vm ioctl
Type: vm ioctl
Parameters: struct kvm_vcpu_event (out)
Parameters: struct kvm_vcpu_event (out)
@@ -676,7 +677,7 @@ struct kvm_vcpu_events {
		__u8 injected;
		__u8 injected;
		__u8 nr;
		__u8 nr;
		__u8 soft;
		__u8 soft;
		__u8 pad;
		__u8 shadow;
	} interrupt;
	} interrupt;
	struct {
	struct {
		__u8 injected;
		__u8 injected;
@@ -688,9 +689,13 @@ struct kvm_vcpu_events {
	__u32 flags;
	__u32 flags;
};
};


KVM_VCPUEVENT_VALID_SHADOW may be set in the flags field to signal that
interrupt.shadow contains a valid state. Otherwise, this field is undefined.

4.30 KVM_SET_VCPU_EVENTS
4.30 KVM_SET_VCPU_EVENTS


Capability: KVM_CAP_VCPU_EVENTS
Capability: KVM_CAP_VCPU_EVENTS
Extended by: KVM_CAP_INTR_SHADOW
Architectures: x86
Architectures: x86
Type: vm ioctl
Type: vm ioctl
Parameters: struct kvm_vcpu_event (in)
Parameters: struct kvm_vcpu_event (in)
@@ -709,6 +714,183 @@ current in-kernel state. The bits are:
KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
KVM_VCPUEVENT_VALID_NMI_PENDING - transfer nmi.pending to the kernel
KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector
KVM_VCPUEVENT_VALID_SIPI_VECTOR - transfer sipi_vector


If KVM_CAP_INTR_SHADOW is available, KVM_VCPUEVENT_VALID_SHADOW can be set in
the flags field to signal that interrupt.shadow contains a valid state and
shall be written into the VCPU.

4.32 KVM_GET_DEBUGREGS

Capability: KVM_CAP_DEBUGREGS
Architectures: x86
Type: vm ioctl
Parameters: struct kvm_debugregs (out)
Returns: 0 on success, -1 on error

Reads debug registers from the vcpu.

struct kvm_debugregs {
	__u64 db[4];
	__u64 dr6;
	__u64 dr7;
	__u64 flags;
	__u64 reserved[9];
};

4.33 KVM_SET_DEBUGREGS

Capability: KVM_CAP_DEBUGREGS
Architectures: x86
Type: vm ioctl
Parameters: struct kvm_debugregs (in)
Returns: 0 on success, -1 on error

Writes debug registers into the vcpu.

See KVM_GET_DEBUGREGS for the data structure. The flags field is unused
yet and must be cleared on entry.

4.34 KVM_SET_USER_MEMORY_REGION

Capability: KVM_CAP_USER_MEM
Architectures: all
Type: vm ioctl
Parameters: struct kvm_userspace_memory_region (in)
Returns: 0 on success, -1 on error

struct kvm_userspace_memory_region {
	__u32 slot;
	__u32 flags;
	__u64 guest_phys_addr;
	__u64 memory_size; /* bytes */
	__u64 userspace_addr; /* start of the userspace allocated memory */
};

/* for kvm_memory_region::flags */
#define KVM_MEM_LOG_DIRTY_PAGES  1UL

This ioctl allows the user to create or modify a guest physical memory
slot.  When changing an existing slot, it may be moved in the guest
physical memory space, or its flags may be modified.  It may not be
resized.  Slots may not overlap in guest physical address space.

Memory for the region is taken starting at the address denoted by the
field userspace_addr, which must point at user addressable memory for
the entire memory slot size.  Any object may back this memory, including
anonymous memory, ordinary files, and hugetlbfs.

It is recommended that the lower 21 bits of guest_phys_addr and userspace_addr
be identical.  This allows large pages in the guest to be backed by large
pages in the host.

The flags field supports just one flag, KVM_MEM_LOG_DIRTY_PAGES, which
instructs kvm to keep track of writes to memory within the slot.  See
the KVM_GET_DIRTY_LOG ioctl.

When the KVM_CAP_SYNC_MMU capability, changes in the backing of the memory
region are automatically reflected into the guest.  For example, an mmap()
that affects the region will be made visible immediately.  Another example
is madvise(MADV_DROP).

It is recommended to use this API instead of the KVM_SET_MEMORY_REGION ioctl.
The KVM_SET_MEMORY_REGION does not allow fine grained control over memory
allocation and is deprecated.

4.35 KVM_SET_TSS_ADDR

Capability: KVM_CAP_SET_TSS_ADDR
Architectures: x86
Type: vm ioctl
Parameters: unsigned long tss_address (in)
Returns: 0 on success, -1 on error

This ioctl defines the physical address of a three-page region in the guest
physical address space.  The region must be within the first 4GB of the
guest physical address space and must not conflict with any memory slot
or any mmio address.  The guest may malfunction if it accesses this memory
region.

This ioctl is required on Intel-based hosts.  This is needed on Intel hardware
because of a quirk in the virtualization implementation (see the internals
documentation when it pops into existence).

4.36 KVM_ENABLE_CAP

Capability: KVM_CAP_ENABLE_CAP
Architectures: ppc
Type: vcpu ioctl
Parameters: struct kvm_enable_cap (in)
Returns: 0 on success; -1 on error

+Not all extensions are enabled by default. Using this ioctl the application
can enable an extension, making it available to the guest.

On systems that do not support this ioctl, it always fails. On systems that
do support it, it only works for extensions that are supported for enablement.

To check if a capability can be enabled, the KVM_CHECK_EXTENSION ioctl should
be used.

struct kvm_enable_cap {
       /* in */
       __u32 cap;

The capability that is supposed to get enabled.

       __u32 flags;

A bitfield indicating future enhancements. Has to be 0 for now.

       __u64 args[4];

Arguments for enabling a feature. If a feature needs initial values to
function properly, this is the place to put them.

       __u8  pad[64];
};

4.37 KVM_GET_MP_STATE

Capability: KVM_CAP_MP_STATE
Architectures: x86, ia64
Type: vcpu ioctl
Parameters: struct kvm_mp_state (out)
Returns: 0 on success; -1 on error

struct kvm_mp_state {
	__u32 mp_state;
};

Returns the vcpu's current "multiprocessing state" (though also valid on
uniprocessor guests).

Possible values are:

 - KVM_MP_STATE_RUNNABLE:        the vcpu is currently running
 - KVM_MP_STATE_UNINITIALIZED:   the vcpu is an application processor (AP)
                                 which has not yet received an INIT signal
 - KVM_MP_STATE_INIT_RECEIVED:   the vcpu has received an INIT signal, and is
                                 now ready for a SIPI
 - KVM_MP_STATE_HALTED:          the vcpu has executed a HLT instruction and
                                 is waiting for an interrupt
 - KVM_MP_STATE_SIPI_RECEIVED:   the vcpu has just received a SIPI (vector
                                 accesible via KVM_GET_VCPU_EVENTS)

This ioctl is only useful after KVM_CREATE_IRQCHIP.  Without an in-kernel
irqchip, the multiprocessing state must be maintained by userspace.

4.38 KVM_SET_MP_STATE

Capability: KVM_CAP_MP_STATE
Architectures: x86, ia64
Type: vcpu ioctl
Parameters: struct kvm_mp_state (in)
Returns: 0 on success; -1 on error

Sets the vcpu's current "multiprocessing state"; see KVM_GET_MP_STATE for
arguments.

This ioctl is only useful after KVM_CREATE_IRQCHIP.  Without an in-kernel
irqchip, the multiprocessing state must be maintained by userspace.


5. The kvm_run structure
5. The kvm_run structure


@@ -820,6 +1002,13 @@ executed a memory-mapped I/O instruction which could not be satisfied
by kvm.  The 'data' member contains the written data if 'is_write' is
by kvm.  The 'data' member contains the written data if 'is_write' is
true, and should be filled by application code otherwise.
true, and should be filled by application code otherwise.


NOTE: For KVM_EXIT_IO, KVM_EXIT_MMIO and KVM_EXIT_OSI, the corresponding
operations are complete (and guest state is consistent) only after userspace
has re-entered the kernel with KVM_RUN.  The kernel side will first finish
incomplete operations and then check for pending signals.  Userspace
can re-enter the guest with an unmasked signal pending to complete
pending operations.

		/* KVM_EXIT_HYPERCALL */
		/* KVM_EXIT_HYPERCALL */
		struct {
		struct {
			__u64 nr;
			__u64 nr;
@@ -829,7 +1018,9 @@ true, and should be filled by application code otherwise.
			__u32 pad;
			__u32 pad;
		} hypercall;
		} hypercall;


Unused.
Unused.  This was once used for 'hypercall to userspace'.  To implement
such functionality, use KVM_EXIT_IO (x86) or KVM_EXIT_MMIO (all except s390).
Note KVM_EXIT_IO is significantly faster than KVM_EXIT_MMIO.


		/* KVM_EXIT_TPR_ACCESS */
		/* KVM_EXIT_TPR_ACCESS */
		struct {
		struct {
@@ -870,6 +1061,19 @@ s390 specific.


powerpc specific.
powerpc specific.


		/* KVM_EXIT_OSI */
		struct {
			__u64 gprs[32];
		} osi;

MOL uses a special hypercall interface it calls 'OSI'. To enable it, we catch
hypercalls and exit with this exit struct that contains all the guest gprs.

If exit_reason is KVM_EXIT_OSI, then the vcpu has triggered such a hypercall.
Userspace can now handle the hypercall and when it's done modify the gprs as
necessary. Upon guest entry all guest GPRs will then be replaced by the values
in this struct.

		/* Fix the size of the union. */
		/* Fix the size of the union. */
		char padding[256];
		char padding[256];
	};
	};
+42 −0
Original line number Original line Diff line number Diff line
KVM CPUID bits
Glauber Costa <glommer@redhat.com>, Red Hat Inc, 2010
=====================================================

A guest running on a kvm host, can check some of its features using
cpuid. This is not always guaranteed to work, since userspace can
mask-out some, or even all KVM-related cpuid features before launching
a guest.

KVM cpuid functions are:

function: KVM_CPUID_SIGNATURE (0x40000000)
returns : eax = 0,
          ebx = 0x4b4d564b,
          ecx = 0x564b4d56,
          edx = 0x4d.
Note that this value in ebx, ecx and edx corresponds to the string "KVMKVMKVM".
This function queries the presence of KVM cpuid leafs.


function: define KVM_CPUID_FEATURES (0x40000001)
returns : ebx, ecx, edx = 0
          eax = and OR'ed group of (1 << flag), where each flags is:


flag                               || value || meaning
=============================================================================
KVM_FEATURE_CLOCKSOURCE            ||     0 || kvmclock available at msrs
                                   ||       || 0x11 and 0x12.
------------------------------------------------------------------------------
KVM_FEATURE_NOP_IO_DELAY           ||     1 || not necessary to perform delays
                                   ||       || on PIO operations.
------------------------------------------------------------------------------
KVM_FEATURE_MMU_OP                 ||     2 || deprecated.
------------------------------------------------------------------------------
KVM_FEATURE_CLOCKSOURCE2           ||     3 || kvmclock available at msrs
                                   ||       || 0x4b564d00 and 0x4b564d01
------------------------------------------------------------------------------
KVM_FEATURE_CLOCKSOURCE_STABLE_BIT ||    24 || host will warn if no guest-side
                                   ||       || per-cpu warps are expected in
                                   ||       || kvmclock.
------------------------------------------------------------------------------
+304 −0
Original line number Original line Diff line number Diff line
The x86 kvm shadow mmu
======================

The mmu (in arch/x86/kvm, files mmu.[ch] and paging_tmpl.h) is responsible
for presenting a standard x86 mmu to the guest, while translating guest
physical addresses to host physical addresses.

The mmu code attempts to satisfy the following requirements:

- correctness: the guest should not be able to determine that it is running
               on an emulated mmu except for timing (we attempt to comply
               with the specification, not emulate the characteristics of
               a particular implementation such as tlb size)
- security:    the guest must not be able to touch host memory not assigned
               to it
- performance: minimize the performance penalty imposed by the mmu
- scaling:     need to scale to large memory and large vcpu guests
- hardware:    support the full range of x86 virtualization hardware
- integration: Linux memory management code must be in control of guest memory
               so that swapping, page migration, page merging, transparent
               hugepages, and similar features work without change
- dirty tracking: report writes to guest memory to enable live migration
               and framebuffer-based displays
- footprint:   keep the amount of pinned kernel memory low (most memory
               should be shrinkable)
- reliablity:  avoid multipage or GFP_ATOMIC allocations

Acronyms
========

pfn   host page frame number
hpa   host physical address
hva   host virtual address
gfn   guest frame number
gpa   guest physical address
gva   guest virtual address
ngpa  nested guest physical address
ngva  nested guest virtual address
pte   page table entry (used also to refer generically to paging structure
      entries)
gpte  guest pte (referring to gfns)
spte  shadow pte (referring to pfns)
tdp   two dimensional paging (vendor neutral term for NPT and EPT)

Virtual and real hardware supported
===================================

The mmu supports first-generation mmu hardware, which allows an atomic switch
of the current paging mode and cr3 during guest entry, as well as
two-dimensional paging (AMD's NPT and Intel's EPT).  The emulated hardware
it exposes is the traditional 2/3/4 level x86 mmu, with support for global
pages, pae, pse, pse36, cr0.wp, and 1GB pages.  Work is in progress to support
exposing NPT capable hardware on NPT capable hosts.

Translation
===========

The primary job of the mmu is to program the processor's mmu to translate
addresses for the guest.  Different translations are required at different
times:

- when guest paging is disabled, we translate guest physical addresses to
  host physical addresses (gpa->hpa)
- when guest paging is enabled, we translate guest virtual addresses, to
  guest physical addresses, to host physical addresses (gva->gpa->hpa)
- when the guest launches a guest of its own, we translate nested guest
  virtual addresses, to nested guest physical addresses, to guest physical
  addresses, to host physical addresses (ngva->ngpa->gpa->hpa)

The primary challenge is to encode between 1 and 3 translations into hardware
that support only 1 (traditional) and 2 (tdp) translations.  When the
number of required translations matches the hardware, the mmu operates in
direct mode; otherwise it operates in shadow mode (see below).

Memory
======

Guest memory (gpa) is part of the user address space of the process that is
using kvm.  Userspace defines the translation between guest addresses and user
addresses (gpa->hva); note that two gpas may alias to the same gva, but not
vice versa.

These gvas may be backed using any method available to the host: anonymous
memory, file backed memory, and device memory.  Memory might be paged by the
host at any time.

Events
======

The mmu is driven by events, some from the guest, some from the host.

Guest generated events:
- writes to control registers (especially cr3)
- invlpg/invlpga instruction execution
- access to missing or protected translations

Host generated events:
- changes in the gpa->hpa translation (either through gpa->hva changes or
  through hva->hpa changes)
- memory pressure (the shrinker)

Shadow pages
============

The principal data structure is the shadow page, 'struct kvm_mmu_page'.  A
shadow page contains 512 sptes, which can be either leaf or nonleaf sptes.  A
shadow page may contain a mix of leaf and nonleaf sptes.

A nonleaf spte allows the hardware mmu to reach the leaf pages and
is not related to a translation directly.  It points to other shadow pages.

A leaf spte corresponds to either one or two translations encoded into
one paging structure entry.  These are always the lowest level of the
translation stack, with optional higher level translations left to NPT/EPT.
Leaf ptes point at guest pages.

The following table shows translations encoded by leaf ptes, with higher-level
translations in parentheses:

 Non-nested guests:
  nonpaging:     gpa->hpa
  paging:        gva->gpa->hpa
  paging, tdp:   (gva->)gpa->hpa
 Nested guests:
  non-tdp:       ngva->gpa->hpa  (*)
  tdp:           (ngva->)ngpa->gpa->hpa

(*) the guest hypervisor will encode the ngva->gpa translation into its page
    tables if npt is not present

Shadow pages contain the following information:
  role.level:
    The level in the shadow paging hierarchy that this shadow page belongs to.
    1=4k sptes, 2=2M sptes, 3=1G sptes, etc.
  role.direct:
    If set, leaf sptes reachable from this page are for a linear range.
    Examples include real mode translation, large guest pages backed by small
    host pages, and gpa->hpa translations when NPT or EPT is active.
    The linear range starts at (gfn << PAGE_SHIFT) and its size is determined
    by role.level (2MB for first level, 1GB for second level, 0.5TB for third
    level, 256TB for fourth level)
    If clear, this page corresponds to a guest page table denoted by the gfn
    field.
  role.quadrant:
    When role.cr4_pae=0, the guest uses 32-bit gptes while the host uses 64-bit
    sptes.  That means a guest page table contains more ptes than the host,
    so multiple shadow pages are needed to shadow one guest page.
    For first-level shadow pages, role.quadrant can be 0 or 1 and denotes the
    first or second 512-gpte block in the guest page table.  For second-level
    page tables, each 32-bit gpte is converted to two 64-bit sptes
    (since each first-level guest page is shadowed by two first-level
    shadow pages) so role.quadrant takes values in the range 0..3.  Each
    quadrant maps 1GB virtual address space.
  role.access:
    Inherited guest access permissions in the form uwx.  Note execute
    permission is positive, not negative.
  role.invalid:
    The page is invalid and should not be used.  It is a root page that is
    currently pinned (by a cpu hardware register pointing to it); once it is
    unpinned it will be destroyed.
  role.cr4_pae:
    Contains the value of cr4.pae for which the page is valid (e.g. whether
    32-bit or 64-bit gptes are in use).
  role.cr4_nxe:
    Contains the value of efer.nxe for which the page is valid.
  role.cr0_wp:
    Contains the value of cr0.wp for which the page is valid.
  gfn:
    Either the guest page table containing the translations shadowed by this
    page, or the base page frame for linear translations.  See role.direct.
  spt:
    A pageful of 64-bit sptes containing the translations for this page.
    Accessed by both kvm and hardware.
    The page pointed to by spt will have its page->private pointing back
    at the shadow page structure.
    sptes in spt point either at guest pages, or at lower-level shadow pages.
    Specifically, if sp1 and sp2 are shadow pages, then sp1->spt[n] may point
    at __pa(sp2->spt).  sp2 will point back at sp1 through parent_pte.
    The spt array forms a DAG structure with the shadow page as a node, and
    guest pages as leaves.
  gfns:
    An array of 512 guest frame numbers, one for each present pte.  Used to
    perform a reverse map from a pte to a gfn.
  slot_bitmap:
    A bitmap containing one bit per memory slot.  If the page contains a pte
    mapping a page from memory slot n, then bit n of slot_bitmap will be set
    (if a page is aliased among several slots, then it is not guaranteed that
    all slots will be marked).
    Used during dirty logging to avoid scanning a shadow page if none if its
    pages need tracking.
  root_count:
    A counter keeping track of how many hardware registers (guest cr3 or
    pdptrs) are now pointing at the page.  While this counter is nonzero, the
    page cannot be destroyed.  See role.invalid.
  multimapped:
    Whether there exist multiple sptes pointing at this page.
  parent_pte/parent_ptes:
    If multimapped is zero, parent_pte points at the single spte that points at
    this page's spt.  Otherwise, parent_ptes points at a data structure
    with a list of parent_ptes.
  unsync:
    If true, then the translations in this page may not match the guest's
    translation.  This is equivalent to the state of the tlb when a pte is
    changed but before the tlb entry is flushed.  Accordingly, unsync ptes
    are synchronized when the guest executes invlpg or flushes its tlb by
    other means.  Valid for leaf pages.
  unsync_children:
    How many sptes in the page point at pages that are unsync (or have
    unsynchronized children).
  unsync_child_bitmap:
    A bitmap indicating which sptes in spt point (directly or indirectly) at
    pages that may be unsynchronized.  Used to quickly locate all unsychronized
    pages reachable from a given page.

Reverse map
===========

The mmu maintains a reverse mapping whereby all ptes mapping a page can be
reached given its gfn.  This is used, for example, when swapping out a page.

Synchronized and unsynchronized pages
=====================================

The guest uses two events to synchronize its tlb and page tables: tlb flushes
and page invalidations (invlpg).

A tlb flush means that we need to synchronize all sptes reachable from the
guest's cr3.  This is expensive, so we keep all guest page tables write
protected, and synchronize sptes to gptes when a gpte is written.

A special case is when a guest page table is reachable from the current
guest cr3.  In this case, the guest is obliged to issue an invlpg instruction
before using the translation.  We take advantage of that by removing write
protection from the guest page, and allowing the guest to modify it freely.
We synchronize modified gptes when the guest invokes invlpg.  This reduces
the amount of emulation we have to do when the guest modifies multiple gptes,
or when the a guest page is no longer used as a page table and is used for
random guest data.

As a side effect we have to resynchronize all reachable unsynchronized shadow
pages on a tlb flush.


Reaction to events
==================

- guest page fault (or npt page fault, or ept violation)

This is the most complicated event.  The cause of a page fault can be:

  - a true guest fault (the guest translation won't allow the access) (*)
  - access to a missing translation
  - access to a protected translation
    - when logging dirty pages, memory is write protected
    - synchronized shadow pages are write protected (*)
  - access to untranslatable memory (mmio)

  (*) not applicable in direct mode

Handling a page fault is performed as follows:

 - if needed, walk the guest page tables to determine the guest translation
   (gva->gpa or ngpa->gpa)
   - if permissions are insufficient, reflect the fault back to the guest
 - determine the host page
   - if this is an mmio request, there is no host page; call the emulator
     to emulate the instruction instead
 - walk the shadow page table to find the spte for the translation,
   instantiating missing intermediate page tables as necessary
 - try to unsynchronize the page
   - if successful, we can let the guest continue and modify the gpte
 - emulate the instruction
   - if failed, unshadow the page and let the guest continue
 - update any translations that were modified by the instruction

invlpg handling:

  - walk the shadow page hierarchy and drop affected translations
  - try to reinstantiate the indicated translation in the hope that the
    guest will use it in the near future

Guest control register updates:

- mov to cr3
  - look up new shadow roots
  - synchronize newly reachable shadow pages

- mov to cr0/cr4/efer
  - set up mmu context for new paging mode
  - look up new shadow roots
  - synchronize newly reachable shadow pages

Host translation updates:

  - mmu notifier called with updated hva
  - look up affected sptes through reverse map
  - drop (or update) translations

Further reading
===============

- NPT presentation from KVM Forum 2008
  http://www.linux-kvm.org/wiki/images/c/c8/KvmForum2008%24kdf2008_21.pdf
+6 −2
Original line number Original line Diff line number Diff line
@@ -979,11 +979,13 @@ long kvm_arch_vm_ioctl(struct file *filp,
		r = -EFAULT;
		r = -EFAULT;
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
		if (copy_from_user(&irq_event, argp, sizeof irq_event))
			goto out;
			goto out;
		r = -ENXIO;
		if (irqchip_in_kernel(kvm)) {
		if (irqchip_in_kernel(kvm)) {
			__s32 status;
			__s32 status;
			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
				    irq_event.irq, irq_event.level);
				    irq_event.irq, irq_event.level);
			if (ioctl == KVM_IRQ_LINE_STATUS) {
			if (ioctl == KVM_IRQ_LINE_STATUS) {
				r = -EFAULT;
				irq_event.status = status;
				irq_event.status = status;
				if (copy_to_user(argp, &irq_event,
				if (copy_to_user(argp, &irq_event,
							sizeof irq_event))
							sizeof irq_event))
@@ -1379,7 +1381,7 @@ static void kvm_release_vm_pages(struct kvm *kvm)
	int i, j;
	int i, j;
	unsigned long base_gfn;
	unsigned long base_gfn;


	slots = rcu_dereference(kvm->memslots);
	slots = kvm_memslots(kvm);
	for (i = 0; i < slots->nmemslots; i++) {
	for (i = 0; i < slots->nmemslots; i++) {
		memslot = &slots->memslots[i];
		memslot = &slots->memslots[i];
		base_gfn = memslot->base_gfn;
		base_gfn = memslot->base_gfn;
@@ -1535,8 +1537,10 @@ long kvm_arch_vcpu_ioctl(struct file *filp,
			goto out;
			goto out;


		if (copy_to_user(user_stack, stack,
		if (copy_to_user(user_stack, stack,
				 sizeof(struct kvm_ia64_vcpu_stack)))
				 sizeof(struct kvm_ia64_vcpu_stack))) {
			r = -EFAULT;
			goto out;
			goto out;
		}


		break;
		break;
	}
	}
+1 −1
Original line number Original line Diff line number Diff line
@@ -51,7 +51,7 @@ static int __init kvm_vmm_init(void)
	vmm_fpswa_interface = fpswa_interface;
	vmm_fpswa_interface = fpswa_interface;


	/*Register vmm data to kvm side*/
	/*Register vmm data to kvm side*/
	return kvm_init(&vmm_info, 1024, THIS_MODULE);
	return kvm_init(&vmm_info, 1024, 0, THIS_MODULE);
}
}


static void __exit kvm_vmm_exit(void)
static void __exit kvm_vmm_exit(void)
Loading