Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 07068d5b authored by Jens Axboe's avatar Jens Axboe
Browse files

blk-mq: split make request handler for multi and single queue



We want slightly different behavior from them:

- On single queue devices, we currently use the per-process plug
  for deferred IO and for merging.

- On multi queue devices, we don't use the per-process plug, but
  we want to go straight to hardware for SYNC IO.

Split blk_mq_make_request() into a blk_sq_make_request() for single
queue devices, and retain blk_mq_make_request() for multi queue
devices. Then we don't need multiple checks for q->nr_hw_queues
in the request mapping.

Signed-off-by: default avatarJens Axboe <axboe@fb.com>
parent 484b4061
Loading
Loading
Loading
Loading
+157 −50
Original line number Original line Diff line number Diff line
@@ -1072,43 +1072,57 @@ static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
	blk_account_io_start(rq, 1);
	blk_account_io_start(rq, 1);
}
}


static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
					 struct blk_mq_ctx *ctx,
					 struct request *rq, struct bio *bio)
{
{
	struct blk_mq_hw_ctx *hctx;
	struct request_queue *q = hctx->queue;
	struct blk_mq_ctx *ctx;
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	int rw = bio_data_dir(bio);
	struct request *rq;
	unsigned int use_plug, request_count = 0;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);


	blk_queue_bounce(q, &bio);
	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
		return false;
	} else {
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}


	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		spin_unlock(&ctx->lock);
		bio_endio(bio, -EIO);
		__blk_mq_free_request(hctx, ctx, rq);
		return;
		return true;
	}
}
}


	if (use_plug && !blk_queue_nomerges(q) &&
struct blk_map_ctx {
	    blk_attempt_plug_merge(q, bio, &request_count))
	struct blk_mq_hw_ctx *hctx;
		return;
	struct blk_mq_ctx *ctx;
};

static struct request *blk_mq_map_request(struct request_queue *q,
					  struct bio *bio,
					  struct blk_map_ctx *data)
{
	struct blk_mq_hw_ctx *hctx;
	struct blk_mq_ctx *ctx;
	struct request *rq;
	int rw = bio_data_dir(bio);


	if (blk_mq_queue_enter(q)) {
	if (unlikely(blk_mq_queue_enter(q))) {
		bio_endio(bio, -EIO);
		bio_endio(bio, -EIO);
		return;
		return NULL;
	}
	}


	ctx = blk_mq_get_ctx(q);
	ctx = blk_mq_get_ctx(q);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);
	hctx = q->mq_ops->map_queue(q, ctx->cpu);


	if (is_sync)
	if (rw_is_sync(bio->bi_rw))
		rw |= REQ_SYNC;
		rw |= REQ_SYNC;

	trace_block_getrq(q, bio, rw);
	trace_block_getrq(q, bio, rw);
	rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
	rq = __blk_mq_alloc_request(hctx, ctx, GFP_ATOMIC, false);
	if (likely(rq))
	if (likely(rq))
@@ -1123,6 +1137,109 @@ static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
	}
	}


	hctx->queued++;
	hctx->queued++;
	data->hctx = hctx;
	data->ctx = ctx;
	return rq;
}

/*
 * Multiple hardware queue variant. This will not use per-process plugs,
 * but will attempt to bypass the hctx queueing if we can go straight to
 * hardware for SYNC IO.
 */
static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	struct blk_map_ctx data;
	struct request *rq;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	rq = blk_mq_map_request(q, bio, &data);
	if (unlikely(!rq))
		return;

	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_insert_flush(rq);
		goto run_queue;
	}

	if (is_sync) {
		int ret;

		blk_mq_bio_to_request(rq, bio);
		blk_mq_start_request(rq, true);

		/*
		 * For OK queue, we are done. For error, kill it. Any other
		 * error (busy), just add it to our list as we previously
		 * would have done
		 */
		ret = q->mq_ops->queue_rq(data.hctx, rq);
		if (ret == BLK_MQ_RQ_QUEUE_OK)
			goto done;
		else {
			__blk_mq_requeue_request(rq);

			if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
				rq->errors = -EIO;
				blk_mq_end_io(rq, rq->errors);
				goto done;
			}
		}
	}

	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		/*
		 * For a SYNC request, send it to the hardware immediately. For
		 * an ASYNC request, just ensure that we run it later on. The
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
run_queue:
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	}
done:
	blk_mq_put_ctx(data.ctx);
}

/*
 * Single hardware queue variant. This will attempt to use any per-process
 * plug for merging and IO deferral.
 */
static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
{
	const int is_sync = rw_is_sync(bio->bi_rw);
	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
	unsigned int use_plug, request_count = 0;
	struct blk_map_ctx data;
	struct request *rq;

	/*
	 * If we have multiple hardware queues, just go directly to
	 * one of those for sync IO.
	 */
	use_plug = !is_flush_fua && !is_sync;

	blk_queue_bounce(q, &bio);

	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
		bio_endio(bio, -EIO);
		return;
	}

	if (use_plug && !blk_queue_nomerges(q) &&
	    blk_attempt_plug_merge(q, bio, &request_count))
		return;

	rq = blk_mq_map_request(q, bio, &data);


	if (unlikely(is_flush_fua)) {
	if (unlikely(is_flush_fua)) {
		blk_mq_bio_to_request(rq, bio);
		blk_mq_bio_to_request(rq, bio);
@@ -1147,37 +1264,23 @@ static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
				trace_block_plug(q);
				trace_block_plug(q);
			}
			}
			list_add_tail(&rq->queuelist, &plug->mq_list);
			list_add_tail(&rq->queuelist, &plug->mq_list);
			blk_mq_put_ctx(ctx);
			blk_mq_put_ctx(data.ctx);
			return;
			return;
		}
		}
	}
	}


	if (!(hctx->flags & BLK_MQ_F_SHOULD_MERGE)) {
	if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
		blk_mq_bio_to_request(rq, bio);
		spin_lock(&ctx->lock);
insert_rq:
		__blk_mq_insert_request(hctx, rq, false);
		spin_unlock(&ctx->lock);
	} else {
		spin_lock(&ctx->lock);
		if (!blk_mq_attempt_merge(q, ctx, bio)) {
			blk_mq_bio_to_request(rq, bio);
			goto insert_rq;
		}

		spin_unlock(&ctx->lock);
		__blk_mq_free_request(hctx, ctx, rq);
	}


		/*
		/*
	 * For a SYNC request, send it to the hardware immediately. For an
		 * For a SYNC request, send it to the hardware immediately. For
	 * ASYNC request, just ensure that we run it later on. The latter
		 * an ASYNC request, just ensure that we run it later on. The
	 * allows for merging opportunities and more efficient dispatching.
		 * latter allows for merging opportunities and more efficient
		 * dispatching.
		 */
		 */
run_queue:
run_queue:
	blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
		blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
	blk_mq_put_ctx(ctx);
	}

	blk_mq_put_ctx(data.ctx);
}
}


/*
/*
@@ -1670,7 +1773,11 @@ struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)


	q->sg_reserved_size = INT_MAX;
	q->sg_reserved_size = INT_MAX;


	if (q->nr_hw_queues > 1)
		blk_queue_make_request(q, blk_mq_make_request);
		blk_queue_make_request(q, blk_mq_make_request);
	else
		blk_queue_make_request(q, blk_sq_make_request);

	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
	blk_queue_rq_timed_out(q, blk_mq_rq_timed_out);
	if (set->timeout)
	if (set->timeout)
		blk_queue_rq_timeout(q, set->timeout);
		blk_queue_rq_timeout(q, set->timeout);