Loading include/linux/pkt_sched.h +24 −26 Original line number Original line Diff line number Diff line Loading @@ -93,6 +93,7 @@ struct tc_fifo_qopt /* PRIO section */ /* PRIO section */ #define TCQ_PRIO_BANDS 16 #define TCQ_PRIO_BANDS 16 #define TCQ_MIN_PRIO_BANDS 2 struct tc_prio_qopt struct tc_prio_qopt { { Loading Loading @@ -169,6 +170,7 @@ struct tc_red_qopt unsigned char Scell_log; /* cell size for idle damping */ unsigned char Scell_log; /* cell size for idle damping */ unsigned char flags; unsigned char flags; #define TC_RED_ECN 1 #define TC_RED_ECN 1 #define TC_RED_HARDDROP 2 }; }; struct tc_red_xstats struct tc_red_xstats Loading @@ -194,15 +196,11 @@ enum #define TCA_GRED_MAX (__TCA_GRED_MAX - 1) #define TCA_GRED_MAX (__TCA_GRED_MAX - 1) #define TCA_SET_OFF TCA_GRED_PARMS struct tc_gred_qopt struct tc_gred_qopt { { __u32 limit; /* HARD maximal queue length (bytes) __u32 limit; /* HARD maximal queue length (bytes) */ */ __u32 qth_min; /* Min average length threshold (bytes) */ __u32 qth_min; /* Min average length threshold (bytes) __u32 qth_max; /* Max average length threshold (bytes) */ */ __u32 qth_max; /* Max average length threshold (bytes) */ __u32 DP; /* upto 2^32 DPs */ __u32 DP; /* upto 2^32 DPs */ __u32 backlog; __u32 backlog; __u32 qave; __u32 qave; Loading @@ -210,22 +208,22 @@ struct tc_gred_qopt __u32 early; __u32 early; __u32 other; __u32 other; __u32 pdrop; __u32 pdrop; __u8 Wlog; /* log(W) */ unsigned char Wlog; /* log(W) */ __u8 Plog; /* log(P_max/(qth_max-qth_min)) */ unsigned char Plog; /* log(P_max/(qth_max-qth_min)) */ __u8 Scell_log; /* cell size for idle damping */ unsigned char Scell_log; /* cell size for idle damping */ __u8 prio; /* prio of this VQ */ __u8 prio; /* prio of this VQ */ __u32 packets; __u32 packets; __u32 bytesin; __u32 bytesin; }; }; /* gred setup */ /* gred setup */ struct tc_gred_sopt struct tc_gred_sopt { { __u32 DPs; __u32 DPs; __u32 def_DP; __u32 def_DP; __u8 grio; __u8 grio; __u8 pad1; __u8 flags; __u16 pad2; __u16 pad1; }; }; /* HTB section */ /* HTB section */ Loading include/linux/skbuff.h +30 −8 Original line number Original line Diff line number Diff line Loading @@ -603,29 +603,46 @@ static inline void skb_queue_head_init(struct sk_buff_head *list) */ */ /** /** * __skb_queue_head - queue a buffer at the list head * __skb_queue_after - queue a buffer at the list head * @list: list to use * @list: list to use * @prev: place after this buffer * @newsk: buffer to queue * @newsk: buffer to queue * * * Queue a buffer at the start of a list. This function takes no locks * Queue a buffer int the middle of a list. This function takes no locks * and you must therefore hold required locks before calling it. * and you must therefore hold required locks before calling it. * * * A buffer cannot be placed on two lists at the same time. * A buffer cannot be placed on two lists at the same time. */ */ extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); static inline void __skb_queue_after(struct sk_buff_head *list, static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *newsk) struct sk_buff *newsk) { { struct sk_buff *prev, *next; struct sk_buff *next; list->qlen++; list->qlen++; prev = (struct sk_buff *)list; next = prev->next; next = prev->next; newsk->next = next; newsk->next = next; newsk->prev = prev; newsk->prev = prev; next->prev = prev->next = newsk; next->prev = prev->next = newsk; } } /** * __skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_after(list, (struct sk_buff *)list, newsk); } /** /** * __skb_queue_tail - queue a buffer at the list tail * __skb_queue_tail - queue a buffer at the list tail * @list: list to use * @list: list to use Loading Loading @@ -1203,6 +1220,11 @@ static inline void kunmap_skb_frag(void *vaddr) prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ skb = skb->next) skb = skb->next) #define skb_queue_reverse_walk(queue, skb) \ for (skb = (queue)->prev; \ prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ skb = skb->prev) extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, int *err); int noblock, int *err); Loading include/net/inet_ecn.h +24 −4 Original line number Original line Diff line number Diff line Loading @@ -2,6 +2,7 @@ #define _INET_ECN_H_ #define _INET_ECN_H_ #include <linux/ip.h> #include <linux/ip.h> #include <linux/skbuff.h> #include <net/dsfield.h> #include <net/dsfield.h> enum { enum { Loading Loading @@ -48,7 +49,7 @@ static inline __u8 INET_ECN_encapsulate(__u8 outer, __u8 inner) (label) |= __constant_htons(INET_ECN_ECT_0 << 4); \ (label) |= __constant_htons(INET_ECN_ECT_0 << 4); \ } while (0) } while (0) static inline void IP_ECN_set_ce(struct iphdr *iph) static inline int IP_ECN_set_ce(struct iphdr *iph) { { u32 check = iph->check; u32 check = iph->check; u32 ecn = (iph->tos + 1) & INET_ECN_MASK; u32 ecn = (iph->tos + 1) & INET_ECN_MASK; Loading @@ -61,7 +62,7 @@ static inline void IP_ECN_set_ce(struct iphdr *iph) * INET_ECN_CE => 00 * INET_ECN_CE => 00 */ */ if (!(ecn & 2)) if (!(ecn & 2)) return; return !ecn; /* /* * The following gives us: * The following gives us: Loading @@ -72,6 +73,7 @@ static inline void IP_ECN_set_ce(struct iphdr *iph) iph->check = check + (check>=0xFFFF); iph->check = check + (check>=0xFFFF); iph->tos |= INET_ECN_CE; iph->tos |= INET_ECN_CE; return 1; } } static inline void IP_ECN_clear(struct iphdr *iph) static inline void IP_ECN_clear(struct iphdr *iph) Loading @@ -87,11 +89,12 @@ static inline void ipv4_copy_dscp(struct iphdr *outer, struct iphdr *inner) struct ipv6hdr; struct ipv6hdr; static inline void IP6_ECN_set_ce(struct ipv6hdr *iph) static inline int IP6_ECN_set_ce(struct ipv6hdr *iph) { { if (INET_ECN_is_not_ect(ipv6_get_dsfield(iph))) if (INET_ECN_is_not_ect(ipv6_get_dsfield(iph))) return; return 0; *(u32*)iph |= htonl(INET_ECN_CE << 20); *(u32*)iph |= htonl(INET_ECN_CE << 20); return 1; } } static inline void IP6_ECN_clear(struct ipv6hdr *iph) static inline void IP6_ECN_clear(struct ipv6hdr *iph) Loading @@ -105,4 +108,21 @@ static inline void ipv6_copy_dscp(struct ipv6hdr *outer, struct ipv6hdr *inner) ipv6_change_dsfield(inner, INET_ECN_MASK, dscp); ipv6_change_dsfield(inner, INET_ECN_MASK, dscp); } } static inline int INET_ECN_set_ce(struct sk_buff *skb) { switch (skb->protocol) { case __constant_htons(ETH_P_IP): if (skb->nh.raw + sizeof(struct iphdr) <= skb->tail) return IP_ECN_set_ce(skb->nh.iph); break; case __constant_htons(ETH_P_IPV6): if (skb->nh.raw + sizeof(struct ipv6hdr) <= skb->tail) return IP6_ECN_set_ce(skb->nh.ipv6h); break; } return 0; } #endif #endif include/net/inet_hashtables.h +0 −2 Original line number Original line Diff line number Diff line Loading @@ -125,9 +125,7 @@ struct inet_hashinfo { rwlock_t lhash_lock ____cacheline_aligned; rwlock_t lhash_lock ____cacheline_aligned; atomic_t lhash_users; atomic_t lhash_users; wait_queue_head_t lhash_wait; wait_queue_head_t lhash_wait; spinlock_t portalloc_lock; kmem_cache_t *bind_bucket_cachep; kmem_cache_t *bind_bucket_cachep; int port_rover; }; }; static inline unsigned int inet_ehashfn(const __u32 laddr, const __u16 lport, static inline unsigned int inet_ehashfn(const __u32 laddr, const __u16 lport, Loading include/net/red.h 0 → 100644 +325 −0 Original line number Original line Diff line number Diff line #ifndef __NET_SCHED_RED_H #define __NET_SCHED_RED_H #include <linux/config.h> #include <linux/types.h> #include <net/pkt_sched.h> #include <net/inet_ecn.h> #include <net/dsfield.h> /* Random Early Detection (RED) algorithm. ======================================= Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. This file codes a "divisionless" version of RED algorithm as written down in Fig.17 of the paper. Short description. ------------------ When a new packet arrives we calculate the average queue length: avg = (1-W)*avg + W*current_queue_len, W is the filter time constant (chosen as 2^(-Wlog)), it controls the inertia of the algorithm. To allow larger bursts, W should be decreased. if (avg > th_max) -> packet marked (dropped). if (avg < th_min) -> packet passes. if (th_min < avg < th_max) we calculate probability: Pb = max_P * (avg - th_min)/(th_max-th_min) and mark (drop) packet with this probability. Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). max_P should be small (not 1), usually 0.01..0.02 is good value. max_P is chosen as a number, so that max_P/(th_max-th_min) is a negative power of two in order arithmetics to contain only shifts. Parameters, settable by user: ----------------------------- qth_min - bytes (should be < qth_max/2) qth_max - bytes (should be at least 2*qth_min and less limit) Wlog - bits (<32) log(1/W). Plog - bits (<32) Plog is related to max_P by formula: max_P = (qth_max-qth_min)/2^Plog; F.e. if qth_max=128K and qth_min=32K, then Plog=22 corresponds to max_P=0.02 Scell_log Stab Lookup table for log((1-W)^(t/t_ave). NOTES: Upper bound on W. ----------------- If you want to allow bursts of L packets of size S, you should choose W: L + 1 - th_min/S < (1-(1-W)^L)/W th_min/S = 32 th_min/S = 4 log(W) L -1 33 -2 35 -3 39 -4 46 -5 57 -6 75 -7 101 -8 135 -9 190 etc. */ #define RED_STAB_SIZE 256 #define RED_STAB_MASK (RED_STAB_SIZE - 1) struct red_stats { u32 prob_drop; /* Early probability drops */ u32 prob_mark; /* Early probability marks */ u32 forced_drop; /* Forced drops, qavg > max_thresh */ u32 forced_mark; /* Forced marks, qavg > max_thresh */ u32 pdrop; /* Drops due to queue limits */ u32 other; /* Drops due to drop() calls */ u32 backlog; }; struct red_parms { /* Parameters */ u32 qth_min; /* Min avg length threshold: A scaled */ u32 qth_max; /* Max avg length threshold: A scaled */ u32 Scell_max; u32 Rmask; /* Cached random mask, see red_rmask */ u8 Scell_log; u8 Wlog; /* log(W) */ u8 Plog; /* random number bits */ u8 Stab[RED_STAB_SIZE]; /* Variables */ int qcount; /* Number of packets since last random number generation */ u32 qR; /* Cached random number */ unsigned long qavg; /* Average queue length: A scaled */ psched_time_t qidlestart; /* Start of current idle period */ }; static inline u32 red_rmask(u8 Plog) { return Plog < 32 ? ((1 << Plog) - 1) : ~0UL; } static inline void red_set_parms(struct red_parms *p, u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, u8 Scell_log, u8 *stab) { /* Reset average queue length, the value is strictly bound * to the parameters below, reseting hurts a bit but leaving * it might result in an unreasonable qavg for a while. --TGR */ p->qavg = 0; p->qcount = -1; p->qth_min = qth_min << Wlog; p->qth_max = qth_max << Wlog; p->Wlog = Wlog; p->Plog = Plog; p->Rmask = red_rmask(Plog); p->Scell_log = Scell_log; p->Scell_max = (255 << Scell_log); memcpy(p->Stab, stab, sizeof(p->Stab)); } static inline int red_is_idling(struct red_parms *p) { return !PSCHED_IS_PASTPERFECT(p->qidlestart); } static inline void red_start_of_idle_period(struct red_parms *p) { PSCHED_GET_TIME(p->qidlestart); } static inline void red_end_of_idle_period(struct red_parms *p) { PSCHED_SET_PASTPERFECT(p->qidlestart); } static inline void red_restart(struct red_parms *p) { red_end_of_idle_period(p); p->qavg = 0; p->qcount = -1; } static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p) { psched_time_t now; long us_idle; int shift; PSCHED_GET_TIME(now); us_idle = PSCHED_TDIFF_SAFE(now, p->qidlestart, p->Scell_max); /* * The problem: ideally, average length queue recalcultion should * be done over constant clock intervals. This is too expensive, so * that the calculation is driven by outgoing packets. * When the queue is idle we have to model this clock by hand. * * SF+VJ proposed to "generate": * * m = idletime / (average_pkt_size / bandwidth) * * dummy packets as a burst after idle time, i.e. * * p->qavg *= (1-W)^m * * This is an apparently overcomplicated solution (f.e. we have to * precompute a table to make this calculation in reasonable time) * I believe that a simpler model may be used here, * but it is field for experiments. */ shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; if (shift) return p->qavg >> shift; else { /* Approximate initial part of exponent with linear function: * * (1-W)^m ~= 1-mW + ... * * Seems, it is the best solution to * problem of too coarse exponent tabulation. */ us_idle = (p->qavg * us_idle) >> p->Scell_log; if (us_idle < (p->qavg >> 1)) return p->qavg - us_idle; else return p->qavg >> 1; } } static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p, unsigned int backlog) { /* * NOTE: p->qavg is fixed point number with point at Wlog. * The formula below is equvalent to floating point * version: * * qavg = qavg*(1-W) + backlog*W; * * --ANK (980924) */ return p->qavg + (backlog - (p->qavg >> p->Wlog)); } static inline unsigned long red_calc_qavg(struct red_parms *p, unsigned int backlog) { if (!red_is_idling(p)) return red_calc_qavg_no_idle_time(p, backlog); else return red_calc_qavg_from_idle_time(p); } static inline u32 red_random(struct red_parms *p) { return net_random() & p->Rmask; } static inline int red_mark_probability(struct red_parms *p, unsigned long qavg) { /* The formula used below causes questions. OK. qR is random number in the interval 0..Rmask i.e. 0..(2^Plog). If we used floating point arithmetics, it would be: (2^Plog)*rnd_num, where rnd_num is less 1. Taking into account, that qavg have fixed point at Wlog, and Plog is related to max_P by max_P = (qth_max-qth_min)/2^Plog; two lines below have the following floating point equivalent: max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount Any questions? --ANK (980924) */ return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR); } enum { RED_BELOW_MIN_THRESH, RED_BETWEEN_TRESH, RED_ABOVE_MAX_TRESH, }; static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg) { if (qavg < p->qth_min) return RED_BELOW_MIN_THRESH; else if (qavg >= p->qth_max) return RED_ABOVE_MAX_TRESH; else return RED_BETWEEN_TRESH; } enum { RED_DONT_MARK, RED_PROB_MARK, RED_HARD_MARK, }; static inline int red_action(struct red_parms *p, unsigned long qavg) { switch (red_cmp_thresh(p, qavg)) { case RED_BELOW_MIN_THRESH: p->qcount = -1; return RED_DONT_MARK; case RED_BETWEEN_TRESH: if (++p->qcount) { if (red_mark_probability(p, qavg)) { p->qcount = 0; p->qR = red_random(p); return RED_PROB_MARK; } } else p->qR = red_random(p); return RED_DONT_MARK; case RED_ABOVE_MAX_TRESH: p->qcount = -1; return RED_HARD_MARK; } BUG(); return RED_DONT_MARK; } #endif Loading
include/linux/pkt_sched.h +24 −26 Original line number Original line Diff line number Diff line Loading @@ -93,6 +93,7 @@ struct tc_fifo_qopt /* PRIO section */ /* PRIO section */ #define TCQ_PRIO_BANDS 16 #define TCQ_PRIO_BANDS 16 #define TCQ_MIN_PRIO_BANDS 2 struct tc_prio_qopt struct tc_prio_qopt { { Loading Loading @@ -169,6 +170,7 @@ struct tc_red_qopt unsigned char Scell_log; /* cell size for idle damping */ unsigned char Scell_log; /* cell size for idle damping */ unsigned char flags; unsigned char flags; #define TC_RED_ECN 1 #define TC_RED_ECN 1 #define TC_RED_HARDDROP 2 }; }; struct tc_red_xstats struct tc_red_xstats Loading @@ -194,15 +196,11 @@ enum #define TCA_GRED_MAX (__TCA_GRED_MAX - 1) #define TCA_GRED_MAX (__TCA_GRED_MAX - 1) #define TCA_SET_OFF TCA_GRED_PARMS struct tc_gred_qopt struct tc_gred_qopt { { __u32 limit; /* HARD maximal queue length (bytes) __u32 limit; /* HARD maximal queue length (bytes) */ */ __u32 qth_min; /* Min average length threshold (bytes) */ __u32 qth_min; /* Min average length threshold (bytes) __u32 qth_max; /* Max average length threshold (bytes) */ */ __u32 qth_max; /* Max average length threshold (bytes) */ __u32 DP; /* upto 2^32 DPs */ __u32 DP; /* upto 2^32 DPs */ __u32 backlog; __u32 backlog; __u32 qave; __u32 qave; Loading @@ -210,22 +208,22 @@ struct tc_gred_qopt __u32 early; __u32 early; __u32 other; __u32 other; __u32 pdrop; __u32 pdrop; __u8 Wlog; /* log(W) */ unsigned char Wlog; /* log(W) */ __u8 Plog; /* log(P_max/(qth_max-qth_min)) */ unsigned char Plog; /* log(P_max/(qth_max-qth_min)) */ __u8 Scell_log; /* cell size for idle damping */ unsigned char Scell_log; /* cell size for idle damping */ __u8 prio; /* prio of this VQ */ __u8 prio; /* prio of this VQ */ __u32 packets; __u32 packets; __u32 bytesin; __u32 bytesin; }; }; /* gred setup */ /* gred setup */ struct tc_gred_sopt struct tc_gred_sopt { { __u32 DPs; __u32 DPs; __u32 def_DP; __u32 def_DP; __u8 grio; __u8 grio; __u8 pad1; __u8 flags; __u16 pad2; __u16 pad1; }; }; /* HTB section */ /* HTB section */ Loading
include/linux/skbuff.h +30 −8 Original line number Original line Diff line number Diff line Loading @@ -603,29 +603,46 @@ static inline void skb_queue_head_init(struct sk_buff_head *list) */ */ /** /** * __skb_queue_head - queue a buffer at the list head * __skb_queue_after - queue a buffer at the list head * @list: list to use * @list: list to use * @prev: place after this buffer * @newsk: buffer to queue * @newsk: buffer to queue * * * Queue a buffer at the start of a list. This function takes no locks * Queue a buffer int the middle of a list. This function takes no locks * and you must therefore hold required locks before calling it. * and you must therefore hold required locks before calling it. * * * A buffer cannot be placed on two lists at the same time. * A buffer cannot be placed on two lists at the same time. */ */ extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); static inline void __skb_queue_after(struct sk_buff_head *list, static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *prev, struct sk_buff *newsk) struct sk_buff *newsk) { { struct sk_buff *prev, *next; struct sk_buff *next; list->qlen++; list->qlen++; prev = (struct sk_buff *)list; next = prev->next; next = prev->next; newsk->next = next; newsk->next = next; newsk->prev = prev; newsk->prev = prev; next->prev = prev->next = newsk; next->prev = prev->next = newsk; } } /** * __skb_queue_head - queue a buffer at the list head * @list: list to use * @newsk: buffer to queue * * Queue a buffer at the start of a list. This function takes no locks * and you must therefore hold required locks before calling it. * * A buffer cannot be placed on two lists at the same time. */ extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk); static inline void __skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk) { __skb_queue_after(list, (struct sk_buff *)list, newsk); } /** /** * __skb_queue_tail - queue a buffer at the list tail * __skb_queue_tail - queue a buffer at the list tail * @list: list to use * @list: list to use Loading Loading @@ -1203,6 +1220,11 @@ static inline void kunmap_skb_frag(void *vaddr) prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ prefetch(skb->next), (skb != (struct sk_buff *)(queue)); \ skb = skb->next) skb = skb->next) #define skb_queue_reverse_walk(queue, skb) \ for (skb = (queue)->prev; \ prefetch(skb->prev), (skb != (struct sk_buff *)(queue)); \ skb = skb->prev) extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock, int *err); int noblock, int *err); Loading
include/net/inet_ecn.h +24 −4 Original line number Original line Diff line number Diff line Loading @@ -2,6 +2,7 @@ #define _INET_ECN_H_ #define _INET_ECN_H_ #include <linux/ip.h> #include <linux/ip.h> #include <linux/skbuff.h> #include <net/dsfield.h> #include <net/dsfield.h> enum { enum { Loading Loading @@ -48,7 +49,7 @@ static inline __u8 INET_ECN_encapsulate(__u8 outer, __u8 inner) (label) |= __constant_htons(INET_ECN_ECT_0 << 4); \ (label) |= __constant_htons(INET_ECN_ECT_0 << 4); \ } while (0) } while (0) static inline void IP_ECN_set_ce(struct iphdr *iph) static inline int IP_ECN_set_ce(struct iphdr *iph) { { u32 check = iph->check; u32 check = iph->check; u32 ecn = (iph->tos + 1) & INET_ECN_MASK; u32 ecn = (iph->tos + 1) & INET_ECN_MASK; Loading @@ -61,7 +62,7 @@ static inline void IP_ECN_set_ce(struct iphdr *iph) * INET_ECN_CE => 00 * INET_ECN_CE => 00 */ */ if (!(ecn & 2)) if (!(ecn & 2)) return; return !ecn; /* /* * The following gives us: * The following gives us: Loading @@ -72,6 +73,7 @@ static inline void IP_ECN_set_ce(struct iphdr *iph) iph->check = check + (check>=0xFFFF); iph->check = check + (check>=0xFFFF); iph->tos |= INET_ECN_CE; iph->tos |= INET_ECN_CE; return 1; } } static inline void IP_ECN_clear(struct iphdr *iph) static inline void IP_ECN_clear(struct iphdr *iph) Loading @@ -87,11 +89,12 @@ static inline void ipv4_copy_dscp(struct iphdr *outer, struct iphdr *inner) struct ipv6hdr; struct ipv6hdr; static inline void IP6_ECN_set_ce(struct ipv6hdr *iph) static inline int IP6_ECN_set_ce(struct ipv6hdr *iph) { { if (INET_ECN_is_not_ect(ipv6_get_dsfield(iph))) if (INET_ECN_is_not_ect(ipv6_get_dsfield(iph))) return; return 0; *(u32*)iph |= htonl(INET_ECN_CE << 20); *(u32*)iph |= htonl(INET_ECN_CE << 20); return 1; } } static inline void IP6_ECN_clear(struct ipv6hdr *iph) static inline void IP6_ECN_clear(struct ipv6hdr *iph) Loading @@ -105,4 +108,21 @@ static inline void ipv6_copy_dscp(struct ipv6hdr *outer, struct ipv6hdr *inner) ipv6_change_dsfield(inner, INET_ECN_MASK, dscp); ipv6_change_dsfield(inner, INET_ECN_MASK, dscp); } } static inline int INET_ECN_set_ce(struct sk_buff *skb) { switch (skb->protocol) { case __constant_htons(ETH_P_IP): if (skb->nh.raw + sizeof(struct iphdr) <= skb->tail) return IP_ECN_set_ce(skb->nh.iph); break; case __constant_htons(ETH_P_IPV6): if (skb->nh.raw + sizeof(struct ipv6hdr) <= skb->tail) return IP6_ECN_set_ce(skb->nh.ipv6h); break; } return 0; } #endif #endif
include/net/inet_hashtables.h +0 −2 Original line number Original line Diff line number Diff line Loading @@ -125,9 +125,7 @@ struct inet_hashinfo { rwlock_t lhash_lock ____cacheline_aligned; rwlock_t lhash_lock ____cacheline_aligned; atomic_t lhash_users; atomic_t lhash_users; wait_queue_head_t lhash_wait; wait_queue_head_t lhash_wait; spinlock_t portalloc_lock; kmem_cache_t *bind_bucket_cachep; kmem_cache_t *bind_bucket_cachep; int port_rover; }; }; static inline unsigned int inet_ehashfn(const __u32 laddr, const __u16 lport, static inline unsigned int inet_ehashfn(const __u32 laddr, const __u16 lport, Loading
include/net/red.h 0 → 100644 +325 −0 Original line number Original line Diff line number Diff line #ifndef __NET_SCHED_RED_H #define __NET_SCHED_RED_H #include <linux/config.h> #include <linux/types.h> #include <net/pkt_sched.h> #include <net/inet_ecn.h> #include <net/dsfield.h> /* Random Early Detection (RED) algorithm. ======================================= Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. This file codes a "divisionless" version of RED algorithm as written down in Fig.17 of the paper. Short description. ------------------ When a new packet arrives we calculate the average queue length: avg = (1-W)*avg + W*current_queue_len, W is the filter time constant (chosen as 2^(-Wlog)), it controls the inertia of the algorithm. To allow larger bursts, W should be decreased. if (avg > th_max) -> packet marked (dropped). if (avg < th_min) -> packet passes. if (th_min < avg < th_max) we calculate probability: Pb = max_P * (avg - th_min)/(th_max-th_min) and mark (drop) packet with this probability. Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). max_P should be small (not 1), usually 0.01..0.02 is good value. max_P is chosen as a number, so that max_P/(th_max-th_min) is a negative power of two in order arithmetics to contain only shifts. Parameters, settable by user: ----------------------------- qth_min - bytes (should be < qth_max/2) qth_max - bytes (should be at least 2*qth_min and less limit) Wlog - bits (<32) log(1/W). Plog - bits (<32) Plog is related to max_P by formula: max_P = (qth_max-qth_min)/2^Plog; F.e. if qth_max=128K and qth_min=32K, then Plog=22 corresponds to max_P=0.02 Scell_log Stab Lookup table for log((1-W)^(t/t_ave). NOTES: Upper bound on W. ----------------- If you want to allow bursts of L packets of size S, you should choose W: L + 1 - th_min/S < (1-(1-W)^L)/W th_min/S = 32 th_min/S = 4 log(W) L -1 33 -2 35 -3 39 -4 46 -5 57 -6 75 -7 101 -8 135 -9 190 etc. */ #define RED_STAB_SIZE 256 #define RED_STAB_MASK (RED_STAB_SIZE - 1) struct red_stats { u32 prob_drop; /* Early probability drops */ u32 prob_mark; /* Early probability marks */ u32 forced_drop; /* Forced drops, qavg > max_thresh */ u32 forced_mark; /* Forced marks, qavg > max_thresh */ u32 pdrop; /* Drops due to queue limits */ u32 other; /* Drops due to drop() calls */ u32 backlog; }; struct red_parms { /* Parameters */ u32 qth_min; /* Min avg length threshold: A scaled */ u32 qth_max; /* Max avg length threshold: A scaled */ u32 Scell_max; u32 Rmask; /* Cached random mask, see red_rmask */ u8 Scell_log; u8 Wlog; /* log(W) */ u8 Plog; /* random number bits */ u8 Stab[RED_STAB_SIZE]; /* Variables */ int qcount; /* Number of packets since last random number generation */ u32 qR; /* Cached random number */ unsigned long qavg; /* Average queue length: A scaled */ psched_time_t qidlestart; /* Start of current idle period */ }; static inline u32 red_rmask(u8 Plog) { return Plog < 32 ? ((1 << Plog) - 1) : ~0UL; } static inline void red_set_parms(struct red_parms *p, u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, u8 Scell_log, u8 *stab) { /* Reset average queue length, the value is strictly bound * to the parameters below, reseting hurts a bit but leaving * it might result in an unreasonable qavg for a while. --TGR */ p->qavg = 0; p->qcount = -1; p->qth_min = qth_min << Wlog; p->qth_max = qth_max << Wlog; p->Wlog = Wlog; p->Plog = Plog; p->Rmask = red_rmask(Plog); p->Scell_log = Scell_log; p->Scell_max = (255 << Scell_log); memcpy(p->Stab, stab, sizeof(p->Stab)); } static inline int red_is_idling(struct red_parms *p) { return !PSCHED_IS_PASTPERFECT(p->qidlestart); } static inline void red_start_of_idle_period(struct red_parms *p) { PSCHED_GET_TIME(p->qidlestart); } static inline void red_end_of_idle_period(struct red_parms *p) { PSCHED_SET_PASTPERFECT(p->qidlestart); } static inline void red_restart(struct red_parms *p) { red_end_of_idle_period(p); p->qavg = 0; p->qcount = -1; } static inline unsigned long red_calc_qavg_from_idle_time(struct red_parms *p) { psched_time_t now; long us_idle; int shift; PSCHED_GET_TIME(now); us_idle = PSCHED_TDIFF_SAFE(now, p->qidlestart, p->Scell_max); /* * The problem: ideally, average length queue recalcultion should * be done over constant clock intervals. This is too expensive, so * that the calculation is driven by outgoing packets. * When the queue is idle we have to model this clock by hand. * * SF+VJ proposed to "generate": * * m = idletime / (average_pkt_size / bandwidth) * * dummy packets as a burst after idle time, i.e. * * p->qavg *= (1-W)^m * * This is an apparently overcomplicated solution (f.e. we have to * precompute a table to make this calculation in reasonable time) * I believe that a simpler model may be used here, * but it is field for experiments. */ shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; if (shift) return p->qavg >> shift; else { /* Approximate initial part of exponent with linear function: * * (1-W)^m ~= 1-mW + ... * * Seems, it is the best solution to * problem of too coarse exponent tabulation. */ us_idle = (p->qavg * us_idle) >> p->Scell_log; if (us_idle < (p->qavg >> 1)) return p->qavg - us_idle; else return p->qavg >> 1; } } static inline unsigned long red_calc_qavg_no_idle_time(struct red_parms *p, unsigned int backlog) { /* * NOTE: p->qavg is fixed point number with point at Wlog. * The formula below is equvalent to floating point * version: * * qavg = qavg*(1-W) + backlog*W; * * --ANK (980924) */ return p->qavg + (backlog - (p->qavg >> p->Wlog)); } static inline unsigned long red_calc_qavg(struct red_parms *p, unsigned int backlog) { if (!red_is_idling(p)) return red_calc_qavg_no_idle_time(p, backlog); else return red_calc_qavg_from_idle_time(p); } static inline u32 red_random(struct red_parms *p) { return net_random() & p->Rmask; } static inline int red_mark_probability(struct red_parms *p, unsigned long qavg) { /* The formula used below causes questions. OK. qR is random number in the interval 0..Rmask i.e. 0..(2^Plog). If we used floating point arithmetics, it would be: (2^Plog)*rnd_num, where rnd_num is less 1. Taking into account, that qavg have fixed point at Wlog, and Plog is related to max_P by max_P = (qth_max-qth_min)/2^Plog; two lines below have the following floating point equivalent: max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount Any questions? --ANK (980924) */ return !(((qavg - p->qth_min) >> p->Wlog) * p->qcount < p->qR); } enum { RED_BELOW_MIN_THRESH, RED_BETWEEN_TRESH, RED_ABOVE_MAX_TRESH, }; static inline int red_cmp_thresh(struct red_parms *p, unsigned long qavg) { if (qavg < p->qth_min) return RED_BELOW_MIN_THRESH; else if (qavg >= p->qth_max) return RED_ABOVE_MAX_TRESH; else return RED_BETWEEN_TRESH; } enum { RED_DONT_MARK, RED_PROB_MARK, RED_HARD_MARK, }; static inline int red_action(struct red_parms *p, unsigned long qavg) { switch (red_cmp_thresh(p, qavg)) { case RED_BELOW_MIN_THRESH: p->qcount = -1; return RED_DONT_MARK; case RED_BETWEEN_TRESH: if (++p->qcount) { if (red_mark_probability(p, qavg)) { p->qcount = 0; p->qR = red_random(p); return RED_PROB_MARK; } } else p->qR = red_random(p); return RED_DONT_MARK; case RED_ABOVE_MAX_TRESH: p->qcount = -1; return RED_HARD_MARK; } BUG(); return RED_DONT_MARK; } #endif