Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 750052dd authored by Uri Simchoni's avatar Uri Simchoni Committed by Herbert Xu
Browse files

crypto: mv_cesa - Add sha1 and hmac(sha1) async hash drivers



Add sha1 and hmac(sha1) async hash drivers

Signed-off-by: default avatarUri Simchoni <uri@jdland.co.il>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 0c5c6c4b
Loading
Loading
Loading
Loading
+507 −7
Original line number Original line Diff line number Diff line
@@ -14,8 +14,14 @@
#include <linux/kthread.h>
#include <linux/kthread.h>
#include <linux/platform_device.h>
#include <linux/platform_device.h>
#include <linux/scatterlist.h>
#include <linux/scatterlist.h>
#include <crypto/internal/hash.h>
#include <crypto/sha.h>


#include "mv_cesa.h"
#include "mv_cesa.h"

#define MV_CESA	"MV-CESA:"
#define MAX_HW_HASH_SIZE	0xFFFF

/*
/*
 * STM:
 * STM:
 *   /---------------------------------------\
 *   /---------------------------------------\
@@ -38,7 +44,7 @@ enum engine_status {
 * @dst_sg_it:		sg iterator for dst
 * @dst_sg_it:		sg iterator for dst
 * @sg_src_left:	bytes left in src to process (scatter list)
 * @sg_src_left:	bytes left in src to process (scatter list)
 * @src_start:		offset to add to src start position (scatter list)
 * @src_start:		offset to add to src start position (scatter list)
 * @crypt_len:		length of current crypt process
 * @crypt_len:		length of current hw crypt/hash process
 * @hw_nbytes:		total bytes to process in hw for this request
 * @hw_nbytes:		total bytes to process in hw for this request
 * @copy_back:		whether to copy data back (crypt) or not (hash)
 * @copy_back:		whether to copy data back (crypt) or not (hash)
 * @sg_dst_left:	bytes left dst to process in this scatter list
 * @sg_dst_left:	bytes left dst to process in this scatter list
@@ -81,6 +87,8 @@ struct crypto_priv {
	struct req_progress p;
	struct req_progress p;
	int max_req_size;
	int max_req_size;
	int sram_size;
	int sram_size;
	int has_sha1;
	int has_hmac_sha1;
};
};


static struct crypto_priv *cpg;
static struct crypto_priv *cpg;
@@ -102,6 +110,31 @@ struct mv_req_ctx {
	int decrypt;
	int decrypt;
};
};


enum hash_op {
	COP_SHA1,
	COP_HMAC_SHA1
};

struct mv_tfm_hash_ctx {
	struct crypto_shash *fallback;
	struct crypto_shash *base_hash;
	u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
	int count_add;
	enum hash_op op;
};

struct mv_req_hash_ctx {
	u64 count;
	u32 state[SHA1_DIGEST_SIZE / 4];
	u8 buffer[SHA1_BLOCK_SIZE];
	int first_hash;		/* marks that we don't have previous state */
	int last_chunk;		/* marks that this is the 'final' request */
	int extra_bytes;	/* unprocessed bytes in buffer */
	enum hash_op op;
	int count_add;
	struct scatterlist dummysg;
};

static void compute_aes_dec_key(struct mv_ctx *ctx)
static void compute_aes_dec_key(struct mv_ctx *ctx)
{
{
	struct crypto_aes_ctx gen_aes_key;
	struct crypto_aes_ctx gen_aes_key;
@@ -265,6 +298,132 @@ static void mv_crypto_algo_completion(void)
	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
	memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
}
}


static void mv_process_hash_current(int first_block)
{
	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
	struct req_progress *p = &cpg->p;
	struct sec_accel_config op = { 0 };
	int is_last;

	switch (req_ctx->op) {
	case COP_SHA1:
	default:
		op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
		break;
	case COP_HMAC_SHA1:
		op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
		break;
	}

	op.mac_src_p =
		MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
		req_ctx->
		count);

	setup_data_in();

	op.mac_digest =
		MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
	op.mac_iv =
		MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
		MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);

	is_last = req_ctx->last_chunk
		&& (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
		&& (req_ctx->count <= MAX_HW_HASH_SIZE);
	if (req_ctx->first_hash) {
		if (is_last)
			op.config |= CFG_NOT_FRAG;
		else
			op.config |= CFG_FIRST_FRAG;

		req_ctx->first_hash = 0;
	} else {
		if (is_last)
			op.config |= CFG_LAST_FRAG;
		else
			op.config |= CFG_MID_FRAG;
	}

	memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));

	writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
	/* GO */
	writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);

	/*
	* XXX: add timer if the interrupt does not occur for some mystery
	* reason
	*/
}

static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
					  struct shash_desc *desc)
{
	int i;
	struct sha1_state shash_state;

	shash_state.count = ctx->count + ctx->count_add;
	for (i = 0; i < 5; i++)
		shash_state.state[i] = ctx->state[i];
	memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
	return crypto_shash_import(desc, &shash_state);
}

static int mv_hash_final_fallback(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
	struct {
		struct shash_desc shash;
		char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
	} desc;
	int rc;

	desc.shash.tfm = tfm_ctx->fallback;
	desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
	if (unlikely(req_ctx->first_hash)) {
		crypto_shash_init(&desc.shash);
		crypto_shash_update(&desc.shash, req_ctx->buffer,
				    req_ctx->extra_bytes);
	} else {
		/* only SHA1 for now....
		 */
		rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
		if (rc)
			goto out;
	}
	rc = crypto_shash_final(&desc.shash, req->result);
out:
	return rc;
}

static void mv_hash_algo_completion(void)
{
	struct ahash_request *req = ahash_request_cast(cpg->cur_req);
	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);

	if (ctx->extra_bytes)
		copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
	sg_miter_stop(&cpg->p.src_sg_it);

	ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
	ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
	ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
	ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
	ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);

	if (likely(ctx->last_chunk)) {
		if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
			memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
			       crypto_ahash_digestsize(crypto_ahash_reqtfm
						       (req)));
		} else
			mv_hash_final_fallback(req);
	}
}

static void dequeue_complete_req(void)
static void dequeue_complete_req(void)
{
{
	struct crypto_async_request *req = cpg->cur_req;
	struct crypto_async_request *req = cpg->cur_req;
@@ -332,7 +491,7 @@ static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
	return i;
	return i;
}
}


static void mv_enqueue_new_req(struct ablkcipher_request *req)
static void mv_start_new_crypt_req(struct ablkcipher_request *req)
{
{
	struct req_progress *p = &cpg->p;
	struct req_progress *p = &cpg->p;
	int num_sgs;
	int num_sgs;
@@ -353,11 +512,68 @@ static void mv_enqueue_new_req(struct ablkcipher_request *req)
	mv_process_current_q(1);
	mv_process_current_q(1);
}
}


static void mv_start_new_hash_req(struct ahash_request *req)
{
	struct req_progress *p = &cpg->p;
	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	int num_sgs, hw_bytes, old_extra_bytes, rc;
	cpg->cur_req = &req->base;
	memset(p, 0, sizeof(struct req_progress));
	hw_bytes = req->nbytes + ctx->extra_bytes;
	old_extra_bytes = ctx->extra_bytes;

	if (unlikely(ctx->extra_bytes)) {
		memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
		       ctx->extra_bytes);
		p->crypt_len = ctx->extra_bytes;
	}

	memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs));

	if (unlikely(!ctx->first_hash)) {
		writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
		writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
		writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
		writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
		writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
	}

	ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
	if (ctx->extra_bytes != 0
	    && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
		hw_bytes -= ctx->extra_bytes;
	else
		ctx->extra_bytes = 0;

	num_sgs = count_sgs(req->src, req->nbytes);
	sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);

	if (hw_bytes) {
		p->hw_nbytes = hw_bytes;
		p->complete = mv_hash_algo_completion;
		p->process = mv_process_hash_current;

		mv_process_hash_current(1);
	} else {
		copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
				ctx->extra_bytes - old_extra_bytes);
		sg_miter_stop(&p->src_sg_it);
		if (ctx->last_chunk)
			rc = mv_hash_final_fallback(req);
		else
			rc = 0;
		cpg->eng_st = ENGINE_IDLE;
		local_bh_disable();
		req->base.complete(&req->base, rc);
		local_bh_enable();
	}
}

static int queue_manag(void *data)
static int queue_manag(void *data)
{
{
	cpg->eng_st = ENGINE_IDLE;
	cpg->eng_st = ENGINE_IDLE;
	do {
	do {
		struct ablkcipher_request *req;
		struct crypto_async_request *async_req = NULL;
		struct crypto_async_request *async_req = NULL;
		struct crypto_async_request *backlog;
		struct crypto_async_request *backlog;


@@ -383,9 +599,18 @@ static int queue_manag(void *data)
		}
		}


		if (async_req) {
		if (async_req) {
			req = container_of(async_req,
			if (async_req->tfm->__crt_alg->cra_type !=
					struct ablkcipher_request, base);
			    &crypto_ahash_type) {
			mv_enqueue_new_req(req);
				struct ablkcipher_request *req =
				    container_of(async_req,
						 struct ablkcipher_request,
						 base);
				mv_start_new_crypt_req(req);
			} else {
				struct ahash_request *req =
				    ahash_request_cast(async_req);
				mv_start_new_hash_req(req);
			}
			async_req = NULL;
			async_req = NULL;
		}
		}


@@ -457,6 +682,215 @@ static int mv_cra_init(struct crypto_tfm *tfm)
	return 0;
	return 0;
}
}


static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
				 int is_last, unsigned int req_len,
				 int count_add)
{
	memset(ctx, 0, sizeof(*ctx));
	ctx->op = op;
	ctx->count = req_len;
	ctx->first_hash = 1;
	ctx->last_chunk = is_last;
	ctx->count_add = count_add;
}

static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
				   unsigned req_len)
{
	ctx->last_chunk = is_last;
	ctx->count += req_len;
}

static int mv_hash_init(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
			     tfm_ctx->count_add);
	return 0;
}

static int mv_hash_update(struct ahash_request *req)
{
	if (!req->nbytes)
		return 0;

	mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
	return mv_handle_req(&req->base);
}

static int mv_hash_final(struct ahash_request *req)
{
	struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
	/* dummy buffer of 4 bytes */
	sg_init_one(&ctx->dummysg, ctx->buffer, 4);
	/* I think I'm allowed to do that... */
	ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
	mv_update_hash_req_ctx(ctx, 1, 0);
	return mv_handle_req(&req->base);
}

static int mv_hash_finup(struct ahash_request *req)
{
	if (!req->nbytes)
		return mv_hash_final(req);

	mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
	return mv_handle_req(&req->base);
}

static int mv_hash_digest(struct ahash_request *req)
{
	const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
	mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
			     req->nbytes, tfm_ctx->count_add);
	return mv_handle_req(&req->base);
}

static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
			     const void *ostate)
{
	const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
	int i;
	for (i = 0; i < 5; i++) {
		ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
		ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
	}
}

static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
			  unsigned int keylen)
{
	int rc;
	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
	int bs, ds, ss;

	if (!ctx->base_hash)
		return 0;

	rc = crypto_shash_setkey(ctx->fallback, key, keylen);
	if (rc)
		return rc;

	/* Can't see a way to extract the ipad/opad from the fallback tfm
	   so I'm basically copying code from the hmac module */
	bs = crypto_shash_blocksize(ctx->base_hash);
	ds = crypto_shash_digestsize(ctx->base_hash);
	ss = crypto_shash_statesize(ctx->base_hash);

	{
		struct {
			struct shash_desc shash;
			char ctx[crypto_shash_descsize(ctx->base_hash)];
		} desc;
		unsigned int i;
		char ipad[ss];
		char opad[ss];

		desc.shash.tfm = ctx->base_hash;
		desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
		    CRYPTO_TFM_REQ_MAY_SLEEP;

		if (keylen > bs) {
			int err;

			err =
			    crypto_shash_digest(&desc.shash, key, keylen, ipad);
			if (err)
				return err;

			keylen = ds;
		} else
			memcpy(ipad, key, keylen);

		memset(ipad + keylen, 0, bs - keylen);
		memcpy(opad, ipad, bs);

		for (i = 0; i < bs; i++) {
			ipad[i] ^= 0x36;
			opad[i] ^= 0x5c;
		}

		rc = crypto_shash_init(&desc.shash) ? :
		    crypto_shash_update(&desc.shash, ipad, bs) ? :
		    crypto_shash_export(&desc.shash, ipad) ? :
		    crypto_shash_init(&desc.shash) ? :
		    crypto_shash_update(&desc.shash, opad, bs) ? :
		    crypto_shash_export(&desc.shash, opad);

		if (rc == 0)
			mv_hash_init_ivs(ctx, ipad, opad);

		return rc;
	}
}

static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
			    enum hash_op op, int count_add)
{
	const char *fallback_driver_name = tfm->__crt_alg->cra_name;
	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
	struct crypto_shash *fallback_tfm = NULL;
	struct crypto_shash *base_hash = NULL;
	int err = -ENOMEM;

	ctx->op = op;
	ctx->count_add = count_add;

	/* Allocate a fallback and abort if it failed. */
	fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
					  CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(fallback_tfm)) {
		printk(KERN_WARNING MV_CESA
		       "Fallback driver '%s' could not be loaded!\n",
		       fallback_driver_name);
		err = PTR_ERR(fallback_tfm);
		goto out;
	}
	ctx->fallback = fallback_tfm;

	if (base_hash_name) {
		/* Allocate a hash to compute the ipad/opad of hmac. */
		base_hash = crypto_alloc_shash(base_hash_name, 0,
					       CRYPTO_ALG_NEED_FALLBACK);
		if (IS_ERR(base_hash)) {
			printk(KERN_WARNING MV_CESA
			       "Base driver '%s' could not be loaded!\n",
			       base_hash_name);
			err = PTR_ERR(fallback_tfm);
			goto err_bad_base;
		}
	}
	ctx->base_hash = base_hash;

	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
				 sizeof(struct mv_req_hash_ctx) +
				 crypto_shash_descsize(ctx->fallback));
	return 0;
err_bad_base:
	crypto_free_shash(fallback_tfm);
out:
	return err;
}

static void mv_cra_hash_exit(struct crypto_tfm *tfm)
{
	struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);

	crypto_free_shash(ctx->fallback);
	if (ctx->base_hash)
		crypto_free_shash(ctx->base_hash);
}

static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
{
	return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
}

static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
{
	return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
}

irqreturn_t crypto_int(int irq, void *priv)
irqreturn_t crypto_int(int irq, void *priv)
{
{
	u32 val;
	u32 val;
@@ -519,6 +953,53 @@ struct crypto_alg mv_aes_alg_cbc = {
	},
	},
};
};


struct ahash_alg mv_sha1_alg = {
	.init = mv_hash_init,
	.update = mv_hash_update,
	.final = mv_hash_final,
	.finup = mv_hash_finup,
	.digest = mv_hash_digest,
	.halg = {
		 .digestsize = SHA1_DIGEST_SIZE,
		 .base = {
			  .cra_name = "sha1",
			  .cra_driver_name = "mv-sha1",
			  .cra_priority = 300,
			  .cra_flags =
			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
			  .cra_blocksize = SHA1_BLOCK_SIZE,
			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
			  .cra_init = mv_cra_hash_sha1_init,
			  .cra_exit = mv_cra_hash_exit,
			  .cra_module = THIS_MODULE,
			  }
		 }
};

struct ahash_alg mv_hmac_sha1_alg = {
	.init = mv_hash_init,
	.update = mv_hash_update,
	.final = mv_hash_final,
	.finup = mv_hash_finup,
	.digest = mv_hash_digest,
	.setkey = mv_hash_setkey,
	.halg = {
		 .digestsize = SHA1_DIGEST_SIZE,
		 .base = {
			  .cra_name = "hmac(sha1)",
			  .cra_driver_name = "mv-hmac-sha1",
			  .cra_priority = 300,
			  .cra_flags =
			  CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
			  .cra_blocksize = SHA1_BLOCK_SIZE,
			  .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
			  .cra_init = mv_cra_hash_hmac_sha1_init,
			  .cra_exit = mv_cra_hash_exit,
			  .cra_module = THIS_MODULE,
			  }
		 }
};

static int mv_probe(struct platform_device *pdev)
static int mv_probe(struct platform_device *pdev)
{
{
	struct crypto_priv *cp;
	struct crypto_priv *cp;
@@ -527,7 +1008,7 @@ static int mv_probe(struct platform_device *pdev)
	int ret;
	int ret;


	if (cpg) {
	if (cpg) {
		printk(KERN_ERR "Second crypto dev?\n");
		printk(KERN_ERR MV_CESA "Second crypto dev?\n");
		return -EEXIST;
		return -EEXIST;
	}
	}


@@ -591,6 +1072,21 @@ static int mv_probe(struct platform_device *pdev)
	ret = crypto_register_alg(&mv_aes_alg_cbc);
	ret = crypto_register_alg(&mv_aes_alg_cbc);
	if (ret)
	if (ret)
		goto err_unreg_ecb;
		goto err_unreg_ecb;

	ret = crypto_register_ahash(&mv_sha1_alg);
	if (ret == 0)
		cpg->has_sha1 = 1;
	else
		printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");

	ret = crypto_register_ahash(&mv_hmac_sha1_alg);
	if (ret == 0) {
		cpg->has_hmac_sha1 = 1;
	} else {
		printk(KERN_WARNING MV_CESA
		       "Could not register hmac-sha1 driver\n");
	}

	return 0;
	return 0;
err_unreg_ecb:
err_unreg_ecb:
	crypto_unregister_alg(&mv_aes_alg_ecb);
	crypto_unregister_alg(&mv_aes_alg_ecb);
@@ -615,6 +1111,10 @@ static int mv_remove(struct platform_device *pdev)


	crypto_unregister_alg(&mv_aes_alg_ecb);
	crypto_unregister_alg(&mv_aes_alg_ecb);
	crypto_unregister_alg(&mv_aes_alg_cbc);
	crypto_unregister_alg(&mv_aes_alg_cbc);
	if (cp->has_sha1)
		crypto_unregister_ahash(&mv_sha1_alg);
	if (cp->has_hmac_sha1)
		crypto_unregister_ahash(&mv_hmac_sha1_alg);
	kthread_stop(cp->queue_th);
	kthread_stop(cp->queue_th);
	free_irq(cp->irq, cp);
	free_irq(cp->irq, cp);
	memset(cp->sram, 0, cp->sram_size);
	memset(cp->sram, 0, cp->sram_size);
+35 −5
Original line number Original line Diff line number Diff line
#ifndef __MV_CRYPTO_H__
#ifndef __MV_CRYPTO_H__


#define DIGEST_INITIAL_VAL_A	0xdd00
#define DIGEST_INITIAL_VAL_A	0xdd00
#define DIGEST_INITIAL_VAL_B	0xdd04
#define DIGEST_INITIAL_VAL_C	0xdd08
#define DIGEST_INITIAL_VAL_D	0xdd0c
#define DIGEST_INITIAL_VAL_E	0xdd10
#define DES_CMD_REG		0xdd58
#define DES_CMD_REG		0xdd58


#define SEC_ACCEL_CMD		0xde00
#define SEC_ACCEL_CMD		0xde00
@@ -70,6 +74,10 @@ struct sec_accel_config {
#define CFG_AES_LEN_128		(0 << 24)
#define CFG_AES_LEN_128		(0 << 24)
#define CFG_AES_LEN_192		(1 << 24)
#define CFG_AES_LEN_192		(1 << 24)
#define CFG_AES_LEN_256		(2 << 24)
#define CFG_AES_LEN_256		(2 << 24)
#define CFG_NOT_FRAG		(0 << 30)
#define CFG_FIRST_FRAG		(1 << 30)
#define CFG_LAST_FRAG		(2 << 30)
#define CFG_MID_FRAG		(3 << 30)


	u32 enc_p;
	u32 enc_p;
#define ENC_P_SRC(x)		(x)
#define ENC_P_SRC(x)		(x)
@@ -90,7 +98,11 @@ struct sec_accel_config {
#define MAC_SRC_TOTAL_LEN(x)	((x) << 16)
#define MAC_SRC_TOTAL_LEN(x)	((x) << 16)


	u32 mac_digest;
	u32 mac_digest;
#define MAC_DIGEST_P(x)	(x)
#define MAC_FRAG_LEN(x)	((x) << 16)
	u32 mac_iv;
	u32 mac_iv;
#define MAC_INNER_IV_P(x)	(x)
#define MAC_OUTER_IV_P(x)	((x) << 16)
}__attribute__ ((packed));
}__attribute__ ((packed));
	/*
	/*
	 * /-----------\ 0
	 * /-----------\ 0
@@ -101,19 +113,37 @@ struct sec_accel_config {
	 * |  IV   IN  |	4 * 4
	 * |  IV   IN  |	4 * 4
	 * |-----------| 0x40 (inplace)
	 * |-----------| 0x40 (inplace)
	 * |  IV BUF   |	4 * 4
	 * |  IV BUF   |	4 * 4
	 * |-----------| 0x50
	 * |-----------| 0x80
	 * |  DATA IN  |	16 * x (max ->max_req_size)
	 * |  DATA IN  |	16 * x (max ->max_req_size)
	 * |-----------| 0x50 (inplace operation)
	 * |-----------| 0x80 (inplace operation)
	 * |  DATA OUT |	16 * x (max ->max_req_size)
	 * |  DATA OUT |	16 * x (max ->max_req_size)
	 * \-----------/ SRAM size
	 * \-----------/ SRAM size
	 */
	 */

	/* Hashing memory map:
	 * /-----------\ 0
	 * | ACCEL CFG |        4 * 8
	 * |-----------| 0x20
	 * | Inner IV  |        5 * 4
	 * |-----------| 0x34
	 * | Outer IV  |        5 * 4
	 * |-----------| 0x48
	 * | Output BUF|        5 * 4
	 * |-----------| 0x80
	 * |  DATA IN  |        64 * x (max ->max_req_size)
	 * \-----------/ SRAM size
	 */
#define SRAM_CONFIG		0x00
#define SRAM_CONFIG		0x00
#define SRAM_DATA_KEY_P		0x20
#define SRAM_DATA_KEY_P		0x20
#define SRAM_DATA_IV		0x40
#define SRAM_DATA_IV		0x40
#define SRAM_DATA_IV_BUF	0x40
#define SRAM_DATA_IV_BUF	0x40
#define SRAM_DATA_IN_START	0x50
#define SRAM_DATA_IN_START	0x80
#define SRAM_DATA_OUT_START	0x50
#define SRAM_DATA_OUT_START	0x80

#define SRAM_HMAC_IV_IN		0x20
#define SRAM_HMAC_IV_OUT	0x34
#define SRAM_DIGEST_BUF		0x48


#define SRAM_CFG_SPACE		0x50
#define SRAM_CFG_SPACE		0x80


#endif
#endif