Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 36c678f3 authored by Arnd Bergmann's avatar Arnd Bergmann
Browse files

Merge tag 'imx-clk' of git://git.pengutronix.de/git/imx/linux-2.6 into next/clk

From Sascha Hauer <s.hauer@pengutronix.de>:

i.MX clk noncritical fixes and updates

* tag 'imx-clk' of git://git.pengutronix.de/git/imx/linux-2.6

:
  ARM: imx: clk-imx31: Fix clock id for rnga driver
  ARM: imx: add missing item to the list of clock event modes
  ARM: i.MX5x CSPI: Fixed clock name for CSPI
  ARM: i.MX5x clocks: Fix GPT clocks
  ARM: i.MX5x clocks: Fix parent for PWM clocks
  ARM: i.MX5x clocks: Add EPIT support
  ARM: mx27: Reenable silicon version print
  ARM: clk-imx27: Fix rtc clock id

Signed-off-by: default avatarArnd Bergmann <arnd@arndb.de>
parents 4450cb7d 14ac5b88
Loading
Loading
Loading
Loading
+0 −21
Original line number Diff line number Diff line
What:           /sys/block/rssd*/registers
Date:           March 2012
KernelVersion:  3.3
Contact:        Asai Thambi S P <asamymuthupa@micron.com>
Description:    This is a read-only file. Dumps below driver information and
                hardware registers.
                    - S ACTive
                    - Command Issue
                    - Completed
                    - PORT IRQ STAT
                    - HOST IRQ STAT
                    - Allocated
                    - Commands in Q

What:           /sys/block/rssd*/status
Date:           April 2012
KernelVersion:  3.4
Contact:        Asai Thambi S P <asamymuthupa@micron.com>
Description:    This is a read-only file. Indicates the status of the device.

What:           /sys/block/rssd*/flags
Date:           May 2012
KernelVersion:  3.5
Contact:        Asai Thambi S P <asamymuthupa@micron.com>
Description:    This is a read-only file. Dumps the flags in port and driver
                data structure
+46 −85
Original line number Diff line number Diff line
@@ -7,13 +7,13 @@ This target is read-only.

Construction Parameters
=======================
    <version> <dev> <hash_dev> <hash_start>
    <version> <dev> <hash_dev>
    <data_block_size> <hash_block_size>
    <num_data_blocks> <hash_start_block>
    <algorithm> <digest> <salt>

<version>
    This is the version number of the on-disk format.
    This is the type of the on-disk hash format.

    0 is the original format used in the Chromium OS.
      The salt is appended when hashing, digests are stored continuously and
@@ -24,22 +24,22 @@ Construction Parameters
      padded with zeros to the power of two.

<dev>
    This is the device containing the data the integrity of which needs to be
    This is the device containing data, the integrity of which needs to be
    checked.  It may be specified as a path, like /dev/sdaX, or a device number,
    <major>:<minor>.

<hash_dev>
    This is the device that that supplies the hash tree data.  It may be
    This is the device that supplies the hash tree data.  It may be
    specified similarly to the device path and may be the same device.  If the
    same device is used, the hash_start should be outside of the dm-verity
    configured device size.
    same device is used, the hash_start should be outside the configured
    dm-verity device.

<data_block_size>
    The block size on a data device.  Each block corresponds to one digest on
    the hash device.
    The block size on a data device in bytes.
    Each block corresponds to one digest on the hash device.

<hash_block_size>
    The size of a hash block.
    The size of a hash block in bytes.

<num_data_blocks>
    The number of data blocks on the data device.  Additional blocks are
@@ -73,20 +73,20 @@ When a dm-verity device is configured, it is expected that the caller
has been authenticated in some way (cryptographic signatures, etc).
After instantiation, all hashes will be verified on-demand during
disk access.  If they cannot be verified up to the root node of the
tree, the root hash, then the I/O will fail.  This should identify
tree, the root hash, then the I/O will fail.  This should detect
tampering with any data on the device and the hash data.

Cryptographic hashes are used to assert the integrity of the device on a
per-block basis. This allows for a lightweight hash computation on first read
into the page cache.  Block hashes are stored linearly-aligned to the nearest
block the size of a page.
into the page cache. Block hashes are stored linearly, aligned to the nearest
block size.

Hash Tree
---------

Each node in the tree is a cryptographic hash.  If it is a leaf node, the hash
is of some block data on disk.  If it is an intermediary node, then the hash is
of a number of child nodes.
of some data block on disk is calculated. If it is an intermediary node,
the hash of a number of child nodes is calculated.

Each entry in the tree is a collection of neighboring nodes that fit in one
block.  The number is determined based on block_size and the size of the
@@ -110,63 +110,23 @@ alg = sha256, num_blocks = 32768, block_size = 4096
On-disk format
==============

Below is the recommended on-disk format. The verity kernel code does not
read the on-disk header. It only reads the hash blocks which directly
follow the header. It is expected that a user-space tool will verify the
integrity of the verity_header and then call dmsetup with the correct
parameters. Alternatively, the header can be omitted and the dmsetup
parameters can be passed via the kernel command-line in a rooted chain
of trust where the command-line is verified.
The verity kernel code does not read the verity metadata on-disk header.
It only reads the hash blocks which directly follow the header.
It is expected that a user-space tool will verify the integrity of the
verity header.

The on-disk format is especially useful in cases where the hash blocks
are on a separate partition. The magic number allows easy identification
of the partition contents. Alternatively, the hash blocks can be stored
in the same partition as the data to be verified. In such a configuration
the filesystem on the partition would be sized a little smaller than
the full-partition, leaving room for the hash blocks.

struct superblock {
	uint8_t signature[8]
		"verity\0\0";

	uint8_t version;
		1 - current format

	uint8_t data_block_bits;
		log2(data block size)

	uint8_t hash_block_bits;
		log2(hash block size)

	uint8_t pad1[1];
		zero padding

	uint16_t salt_size;
		big-endian salt size

	uint8_t pad2[2];
		zero padding

	uint32_t data_blocks_hi;
		big-endian high 32 bits of the 64-bit number of data blocks

	uint32_t data_blocks_lo;
		big-endian low 32 bits of the 64-bit number of data blocks

	uint8_t algorithm[16];
		cryptographic algorithm

	uint8_t salt[384];
		salt (the salt size is specified above)

	uint8_t pad3[88];
		zero padding to 512-byte boundary
}
Alternatively, the header can be omitted and the dmsetup parameters can
be passed via the kernel command-line in a rooted chain of trust where
the command-line is verified.

Directly following the header (and with sector number padded to the next hash
block boundary) are the hash blocks which are stored a depth at a time
(starting from the root), sorted in order of increasing index.

The full specification of kernel parameters and on-disk metadata format
is available at the cryptsetup project's wiki page
  http://code.google.com/p/cryptsetup/wiki/DMVerity

Status
======
V (for Valid) is returned if every check performed so far was valid.
@@ -174,21 +134,22 @@ If any check failed, C (for Corruption) is returned.

Example
=======

Set up a device:
  dmsetup create vroot --table \
    "0 2097152 "\
    "verity 1 /dev/sda1 /dev/sda2 4096 4096 2097152 1 "\
  # dmsetup create vroot --readonly --table \
    "0 2097152 verity 1 /dev/sda1 /dev/sda2 4096 4096 262144 1 sha256 "\
    "4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076 "\
    "1234000000000000000000000000000000000000000000000000000000000000"

A command line tool veritysetup is available to compute or verify
the hash tree or activate the kernel driver.  This is available from
the LVM2 upstream repository and may be supplied as a package called
device-mapper-verity-tools:
    git://sources.redhat.com/git/lvm2
    http://sourceware.org/git/?p=lvm2.git
    http://sourceware.org/cgi-bin/cvsweb.cgi/LVM2/verity?cvsroot=lvm2

veritysetup -a vroot /dev/sda1 /dev/sda2 \
the hash tree or activate the kernel device. This is available from
the cryptsetup upstream repository http://code.google.com/p/cryptsetup/
(as a libcryptsetup extension).

Create hash on the device:
  # veritysetup format /dev/sda1 /dev/sda2
  ...
  Root hash: 4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076

Activate the device:
  # veritysetup create vroot /dev/sda1 /dev/sda2 \
    4392712ba01368efdf14b05c76f9e4df0d53664630b5d48632ed17a137f39076
+1 −0
Original line number Diff line number Diff line
@@ -2,6 +2,7 @@

Required properties:
- compatible : "fsl,mma8450".
- reg: the I2C address of MMA8450

Example:

+2 −2
Original line number Diff line number Diff line
@@ -46,8 +46,8 @@ Examples:

ecspi@70010000 { /* ECSPI1 */
	fsl,spi-num-chipselects = <2>;
	cs-gpios = <&gpio3 24 0>, /* GPIO4_24 */
		   <&gpio3 25 0>; /* GPIO4_25 */
	cs-gpios = <&gpio4 24 0>, /* GPIO4_24 */
		   <&gpio4 25 0>; /* GPIO4_25 */
	status = "okay";

	pmic: mc13892@0 {
+2 −2
Original line number Diff line number Diff line
@@ -29,6 +29,6 @@ esdhc@70008000 {
	compatible = "fsl,imx51-esdhc";
	reg = <0x70008000 0x4000>;
	interrupts = <2>;
	cd-gpios = <&gpio0 6 0>; /* GPIO1_6 */
	wp-gpios = <&gpio0 5 0>; /* GPIO1_5 */
	cd-gpios = <&gpio1 6 0>; /* GPIO1_6 */
	wp-gpios = <&gpio1 5 0>; /* GPIO1_5 */
};
Loading