Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 34ae7f35 authored by Mark Langsdorf's avatar Mark Langsdorf Committed by Dave Jones
Browse files

[CPUFREQ][2/2] preregister support for powernow-k8



This patch provides support for the _PSD ACPI object in the Powernow-k8
driver.  Although it looks like an invasive patch, most of it is
simply the consequence of turning the static acpi_performance_data
structure into a pointer.

AMD has tested it on several machines over the past few days without issue.

[trivial checkpatch warnings fixed up by davej]
[X86_POWERNOW_K8_ACPI=n buildfix from Randy Dunlap]

Signed-off-by: default avatarMark Langsdorf <mark.langsdorf@amd.com>
Tested-by: default avatarFrank Arnold <frank.arnold@amd.com>
Signed-off-by: default avatarRandy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: default avatarDave Jones <davej@redhat.com>
parent 23431b49
Loading
Loading
Loading
Loading
+73 −36
Original line number Original line Diff line number Diff line
@@ -737,44 +737,63 @@ static int find_psb_table(struct powernow_k8_data *data)
#ifdef CONFIG_X86_POWERNOW_K8_ACPI
#ifdef CONFIG_X86_POWERNOW_K8_ACPI
static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index)
{
{
	if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
	if (!data->acpi_data->state_count || (cpu_family == CPU_HW_PSTATE))
		return;
		return;


	data->irt = (data->acpi_data.states[index].control >> IRT_SHIFT) & IRT_MASK;
	data->irt = (data->acpi_data->states[index].control >> IRT_SHIFT) & IRT_MASK;
	data->rvo = (data->acpi_data.states[index].control >> RVO_SHIFT) & RVO_MASK;
	data->rvo = (data->acpi_data->states[index].control >> RVO_SHIFT) & RVO_MASK;
	data->exttype = (data->acpi_data.states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
	data->exttype = (data->acpi_data->states[index].control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
	data->plllock = (data->acpi_data.states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
	data->plllock = (data->acpi_data->states[index].control >> PLL_L_SHIFT) & PLL_L_MASK;
	data->vidmvs = 1 << ((data->acpi_data.states[index].control >> MVS_SHIFT) & MVS_MASK);
	data->vidmvs = 1 << ((data->acpi_data->states[index].control >> MVS_SHIFT) & MVS_MASK);
	data->vstable = (data->acpi_data.states[index].control >> VST_SHIFT) & VST_MASK;
	data->vstable = (data->acpi_data->states[index].control >> VST_SHIFT) & VST_MASK;
}


static struct acpi_processor_performance *acpi_perf_data;
static int preregister_valid;

static int powernow_k8_cpu_preinit_acpi(void)
{
	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
	if (!acpi_perf_data)
		return -ENODEV;

	if (acpi_processor_preregister_performance(acpi_perf_data))
		return -ENODEV;
	else
		preregister_valid = 1;
	return 0;
}
}


static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
{
{
	struct cpufreq_frequency_table *powernow_table;
	struct cpufreq_frequency_table *powernow_table;
	int ret_val;
	int ret_val;
	int cpu = 0;


	if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
	data->acpi_data = percpu_ptr(acpi_perf_data, cpu);
	if (acpi_processor_register_performance(data->acpi_data, data->cpu)) {
		dprintk("register performance failed: bad ACPI data\n");
		dprintk("register performance failed: bad ACPI data\n");
		return -EIO;
		return -EIO;
	}
	}


	/* verify the data contained in the ACPI structures */
	/* verify the data contained in the ACPI structures */
	if (data->acpi_data.state_count <= 1) {
	if (data->acpi_data->state_count <= 1) {
		dprintk("No ACPI P-States\n");
		dprintk("No ACPI P-States\n");
		goto err_out;
		goto err_out;
	}
	}


	if ((data->acpi_data.control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
	if ((data->acpi_data->control_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
		(data->acpi_data.status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
		(data->acpi_data->status_register.space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
		dprintk("Invalid control/status registers (%x - %x)\n",
		dprintk("Invalid control/status registers (%x - %x)\n",
			data->acpi_data.control_register.space_id,
			data->acpi_data->control_register.space_id,
			data->acpi_data.status_register.space_id);
			data->acpi_data->status_register.space_id);
		goto err_out;
		goto err_out;
	}
	}


	/* fill in data->powernow_table */
	/* fill in data->powernow_table */
	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
	powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
		* (data->acpi_data.state_count + 1)), GFP_KERNEL);
		* (data->acpi_data->state_count + 1)), GFP_KERNEL);
	if (!powernow_table) {
	if (!powernow_table) {
		dprintk("powernow_table memory alloc failure\n");
		dprintk("powernow_table memory alloc failure\n");
		goto err_out;
		goto err_out;
@@ -787,12 +806,12 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
	if (ret_val)
	if (ret_val)
		goto err_out_mem;
		goto err_out_mem;


	powernow_table[data->acpi_data.state_count].frequency = CPUFREQ_TABLE_END;
	powernow_table[data->acpi_data->state_count].frequency = CPUFREQ_TABLE_END;
	powernow_table[data->acpi_data.state_count].index = 0;
	powernow_table[data->acpi_data->state_count].index = 0;
	data->powernow_table = powernow_table;
	data->powernow_table = powernow_table;


	/* fill in data */
	/* fill in data */
	data->numps = data->acpi_data.state_count;
	data->numps = data->acpi_data->state_count;
	if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
	if (first_cpu(per_cpu(cpu_core_map, data->cpu)) == data->cpu)
		print_basics(data);
		print_basics(data);
	powernow_k8_acpi_pst_values(data, 0);
	powernow_k8_acpi_pst_values(data, 0);
@@ -800,16 +819,31 @@ static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
	/* notify BIOS that we exist */
	/* notify BIOS that we exist */
	acpi_processor_notify_smm(THIS_MODULE);
	acpi_processor_notify_smm(THIS_MODULE);


	/* determine affinity, from ACPI if available */
	if (preregister_valid) {
		if ((data->acpi_data->shared_type == CPUFREQ_SHARED_TYPE_ALL) ||
			(data->acpi_data->shared_type == CPUFREQ_SHARED_TYPE_ANY))
			data->starting_core_affinity = data->acpi_data->shared_cpu_map;
		else
			data->starting_core_affinity = cpumask_of_cpu(data->cpu);
	} else {
	/* best guess from family if not */
		if (cpu_family == CPU_HW_PSTATE)
			data->starting_core_affinity = cpumask_of_cpu(data->cpu);
		else
			data->starting_core_affinity = per_cpu(cpu_core_map, data->cpu);
	}

	return 0;
	return 0;


err_out_mem:
err_out_mem:
	kfree(powernow_table);
	kfree(powernow_table);


err_out:
err_out:
	acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
	acpi_processor_unregister_performance(data->acpi_data, data->cpu);


	/* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
	/* data->acpi_data.state_count informs us at ->exit() whether ACPI was used */
	data->acpi_data.state_count = 0;
	data->acpi_data->state_count = 0;


	return -ENODEV;
	return -ENODEV;
}
}
@@ -821,10 +855,10 @@ static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpuf
	rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
	rdmsr(MSR_PSTATE_CUR_LIMIT, hi, lo);
	data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
	data->max_hw_pstate = (hi & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;


	for (i = 0; i < data->acpi_data.state_count; i++) {
	for (i = 0; i < data->acpi_data->state_count; i++) {
		u32 index;
		u32 index;


		index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
		index = data->acpi_data->states[i].control & HW_PSTATE_MASK;
		if (index > data->max_hw_pstate) {
		if (index > data->max_hw_pstate) {
			printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
			printk(KERN_ERR PFX "invalid pstate %d - bad value %d.\n", i, index);
			printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
			printk(KERN_ERR PFX "Please report to BIOS manufacturer\n");
@@ -840,7 +874,7 @@ static int fill_powernow_table_pstate(struct powernow_k8_data *data, struct cpuf


		powernow_table[i].index = index;
		powernow_table[i].index = index;


		powernow_table[i].frequency = data->acpi_data.states[i].core_frequency * 1000;
		powernow_table[i].frequency = data->acpi_data->states[i].core_frequency * 1000;
	}
	}
	return 0;
	return 0;
}
}
@@ -849,16 +883,16 @@ static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpuf
{
{
	int i;
	int i;
	int cntlofreq = 0;
	int cntlofreq = 0;
	for (i = 0; i < data->acpi_data.state_count; i++) {
	for (i = 0; i < data->acpi_data->state_count; i++) {
		u32 fid;
		u32 fid;
		u32 vid;
		u32 vid;


		if (data->exttype) {
		if (data->exttype) {
			fid = data->acpi_data.states[i].status & EXT_FID_MASK;
			fid = data->acpi_data->states[i].status & EXT_FID_MASK;
			vid = (data->acpi_data.states[i].status >> VID_SHIFT) & EXT_VID_MASK;
			vid = (data->acpi_data->states[i].status >> VID_SHIFT) & EXT_VID_MASK;
		} else {
		} else {
			fid = data->acpi_data.states[i].control & FID_MASK;
			fid = data->acpi_data->states[i].control & FID_MASK;
			vid = (data->acpi_data.states[i].control >> VID_SHIFT) & VID_MASK;
			vid = (data->acpi_data->states[i].control >> VID_SHIFT) & VID_MASK;
		}
		}


		dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
		dprintk("   %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
@@ -899,10 +933,10 @@ static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpuf
				cntlofreq = i;
				cntlofreq = i;
		}
		}


		if (powernow_table[i].frequency != (data->acpi_data.states[i].core_frequency * 1000)) {
		if (powernow_table[i].frequency != (data->acpi_data->states[i].core_frequency * 1000)) {
			printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
			printk(KERN_INFO PFX "invalid freq entries %u kHz vs. %u kHz\n",
				powernow_table[i].frequency,
				powernow_table[i].frequency,
				(unsigned int) (data->acpi_data.states[i].core_frequency * 1000));
				(unsigned int) (data->acpi_data->states[i].core_frequency * 1000));
			powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
			powernow_table[i].frequency = CPUFREQ_ENTRY_INVALID;
			continue;
			continue;
		}
		}
@@ -912,11 +946,12 @@ static int fill_powernow_table_fidvid(struct powernow_k8_data *data, struct cpuf


static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
{
{
	if (data->acpi_data.state_count)
	if (data->acpi_data->state_count)
		acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
		acpi_processor_unregister_performance(data->acpi_data, data->cpu);
}
}


#else
#else
static int powernow_k8_cpu_preinit_acpi(void) { return -ENODEV; }
static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data) { return -ENODEV; }
static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data) { return; }
static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data, unsigned int index) { return; }
@@ -1101,7 +1136,7 @@ static int powernowk8_verify(struct cpufreq_policy *pol)
static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
{
{
	struct powernow_k8_data *data;
	struct powernow_k8_data *data;
	cpumask_t oldmask;
	cpumask_t oldmask = CPU_MASK_ALL;
	int rc;
	int rc;


	if (!cpu_online(pol->cpu))
	if (!cpu_online(pol->cpu))
@@ -1174,10 +1209,7 @@ static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
	/* run on any CPU again */
	/* run on any CPU again */
	set_cpus_allowed_ptr(current, &oldmask);
	set_cpus_allowed_ptr(current, &oldmask);


	if (cpu_family == CPU_HW_PSTATE)
	pol->cpus = data->starting_core_affinity;
		pol->cpus = cpumask_of_cpu(pol->cpu);
	else
		pol->cpus = per_cpu(cpu_core_map, pol->cpu);
	data->available_cores = &(pol->cpus);
	data->available_cores = &(pol->cpus);


	/* Take a crude guess here.
	/* Take a crude guess here.
@@ -1300,6 +1332,7 @@ static int __cpuinit powernowk8_init(void)
	}
	}


	if (supported_cpus == num_online_cpus()) {
	if (supported_cpus == num_online_cpus()) {
		powernow_k8_cpu_preinit_acpi();
		printk(KERN_INFO PFX "Found %d %s "
		printk(KERN_INFO PFX "Found %d %s "
			"processors (%d cpu cores) (" VERSION ")\n",
			"processors (%d cpu cores) (" VERSION ")\n",
			num_online_nodes(),
			num_online_nodes(),
@@ -1316,6 +1349,10 @@ static void __exit powernowk8_exit(void)
	dprintk("exit\n");
	dprintk("exit\n");


	cpufreq_unregister_driver(&cpufreq_amd64_driver);
	cpufreq_unregister_driver(&cpufreq_amd64_driver);

#ifdef CONFIG_X86_POWERNOW_K8_ACPI
	free_percpu(acpi_perf_data);
#endif
}
}


MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and Mark Langsdorf <mark.langsdorf@amd.com>");
+2 −1
Original line number Original line Diff line number Diff line
@@ -33,12 +33,13 @@ struct powernow_k8_data {
#ifdef CONFIG_X86_POWERNOW_K8_ACPI
#ifdef CONFIG_X86_POWERNOW_K8_ACPI
	/* the acpi table needs to be kept. it's only available if ACPI was
	/* the acpi table needs to be kept. it's only available if ACPI was
	 * used to determine valid frequency/vid/fid states */
	 * used to determine valid frequency/vid/fid states */
	struct acpi_processor_performance acpi_data;
	struct acpi_processor_performance *acpi_data;
#endif
#endif
	/* we need to keep track of associated cores, but let cpufreq
	/* we need to keep track of associated cores, but let cpufreq
	 * handle hotplug events - so just point at cpufreq pol->cpus
	 * handle hotplug events - so just point at cpufreq pol->cpus
	 * structure */
	 * structure */
	cpumask_t *available_cores;
	cpumask_t *available_cores;
	cpumask_t starting_core_affinity;
};
};