Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit c32c5c50 authored by Alexandre Belloni's avatar Alexandre Belloni Committed by Thierry Reding
Browse files

pwm: sun4i: Switch to atomic PWM



Switch the driver to atomic PWM. This makes it easier to wait a proper
amount of time when changing the duty cycle before disabling the channel
(main use case is switching the duty cycle to 0 before disabling).

Signed-off-by: default avatarAlexandre Belloni <alexandre.belloni@free-electrons.com>
Acked-by: default avatarMaxime Ripard <maxime.ripard@free-electrons.com>
Signed-off-by: default avatarThierry Reding <thierry.reding@gmail.com>
parent 93e0dfb2
Loading
Loading
Loading
Loading
+166 −0
Original line number Original line Diff line number Diff line
@@ -8,8 +8,10 @@


#include <linux/bitops.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/io.h>
#include <linux/jiffies.h>
#include <linux/module.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/of_device.h>
@@ -81,6 +83,8 @@ struct sun4i_pwm_chip {
	void __iomem *base;
	void __iomem *base;
	spinlock_t ctrl_lock;
	spinlock_t ctrl_lock;
	const struct sun4i_pwm_data *data;
	const struct sun4i_pwm_data *data;
	unsigned long next_period[2];
	bool needs_delay[2];
};
};


static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
static inline struct sun4i_pwm_chip *to_sun4i_pwm_chip(struct pwm_chip *chip)
@@ -140,6 +144,167 @@ static void sun4i_pwm_get_state(struct pwm_chip *chip,
	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
	state->period = DIV_ROUND_CLOSEST_ULL(tmp, clk_rate);
}
}


static int sun4i_pwm_calculate(struct sun4i_pwm_chip *sun4i_pwm,
			       struct pwm_state *state,
			       u32 *dty, u32 *prd, unsigned int *prsclr)
{
	u64 clk_rate, div = 0;
	unsigned int pval, prescaler = 0;

	clk_rate = clk_get_rate(sun4i_pwm->clk);

	if (sun4i_pwm->data->has_prescaler_bypass) {
		/* First, test without any prescaler when available */
		prescaler = PWM_PRESCAL_MASK;
		pval = 1;
		/*
		 * When not using any prescaler, the clock period in nanoseconds
		 * is not an integer so round it half up instead of
		 * truncating to get less surprising values.
		 */
		div = clk_rate * state->period + NSEC_PER_SEC / 2;
		do_div(div, NSEC_PER_SEC);
		if (div - 1 > PWM_PRD_MASK)
			prescaler = 0;
	}

	if (prescaler == 0) {
		/* Go up from the first divider */
		for (prescaler = 0; prescaler < PWM_PRESCAL_MASK; prescaler++) {
			if (!prescaler_table[prescaler])
				continue;
			pval = prescaler_table[prescaler];
			div = clk_rate;
			do_div(div, pval);
			div = div * state->period;
			do_div(div, NSEC_PER_SEC);
			if (div - 1 <= PWM_PRD_MASK)
				break;
		}

		if (div - 1 > PWM_PRD_MASK)
			return -EINVAL;
	}

	*prd = div;
	div *= state->duty_cycle;
	do_div(div, state->period);
	*dty = div;
	*prsclr = prescaler;

	div = (u64)pval * NSEC_PER_SEC * *prd;
	state->period = DIV_ROUND_CLOSEST_ULL(div, clk_rate);

	div = (u64)pval * NSEC_PER_SEC * *dty;
	state->duty_cycle = DIV_ROUND_CLOSEST_ULL(div, clk_rate);

	return 0;
}

static int sun4i_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			   struct pwm_state *state)
{
	struct sun4i_pwm_chip *sun4i_pwm = to_sun4i_pwm_chip(chip);
	struct pwm_state cstate;
	u32 ctrl;
	int ret;
	unsigned int delay_us;
	unsigned long now;

	pwm_get_state(pwm, &cstate);

	if (!cstate.enabled) {
		ret = clk_prepare_enable(sun4i_pwm->clk);
		if (ret) {
			dev_err(chip->dev, "failed to enable PWM clock\n");
			return ret;
		}
	}

	spin_lock(&sun4i_pwm->ctrl_lock);
	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);

	if ((cstate.period != state->period) ||
	    (cstate.duty_cycle != state->duty_cycle)) {
		u32 period, duty, val;
		unsigned int prescaler;

		ret = sun4i_pwm_calculate(sun4i_pwm, state,
					  &duty, &period, &prescaler);
		if (ret) {
			dev_err(chip->dev, "period exceeds the maximum value\n");
			spin_unlock(&sun4i_pwm->ctrl_lock);
			if (!cstate.enabled)
				clk_disable_unprepare(sun4i_pwm->clk);
			return ret;
		}

		if (PWM_REG_PRESCAL(ctrl, pwm->hwpwm) != prescaler) {
			/* Prescaler changed, the clock has to be gated */
			ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
			sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);

			ctrl &= ~BIT_CH(PWM_PRESCAL_MASK, pwm->hwpwm);
			ctrl |= BIT_CH(prescaler, pwm->hwpwm);
		}

		val = (duty & PWM_DTY_MASK) | PWM_PRD(period);
		sun4i_pwm_writel(sun4i_pwm, val, PWM_CH_PRD(pwm->hwpwm));
		sun4i_pwm->next_period[pwm->hwpwm] = jiffies +
			usecs_to_jiffies(cstate.period / 1000 + 1);
		sun4i_pwm->needs_delay[pwm->hwpwm] = true;
	}

	if (state->polarity != PWM_POLARITY_NORMAL)
		ctrl &= ~BIT_CH(PWM_ACT_STATE, pwm->hwpwm);
	else
		ctrl |= BIT_CH(PWM_ACT_STATE, pwm->hwpwm);

	ctrl |= BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
	if (state->enabled) {
		ctrl |= BIT_CH(PWM_EN, pwm->hwpwm);
	} else if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
		ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
		ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
	}

	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);

	spin_unlock(&sun4i_pwm->ctrl_lock);

	if (state->enabled)
		return 0;

	if (!sun4i_pwm->needs_delay[pwm->hwpwm]) {
		clk_disable_unprepare(sun4i_pwm->clk);
		return 0;
	}

	/* We need a full period to elapse before disabling the channel. */
	now = jiffies;
	if (sun4i_pwm->needs_delay[pwm->hwpwm] &&
	    time_before(now, sun4i_pwm->next_period[pwm->hwpwm])) {
		delay_us = jiffies_to_usecs(sun4i_pwm->next_period[pwm->hwpwm] -
					   now);
		if ((delay_us / 500) > MAX_UDELAY_MS)
			msleep(delay_us / 1000 + 1);
		else
			usleep_range(delay_us, delay_us * 2);
	}
	sun4i_pwm->needs_delay[pwm->hwpwm] = false;

	spin_lock(&sun4i_pwm->ctrl_lock);
	ctrl = sun4i_pwm_readl(sun4i_pwm, PWM_CTRL_REG);
	ctrl &= ~BIT_CH(PWM_CLK_GATING, pwm->hwpwm);
	ctrl &= ~BIT_CH(PWM_EN, pwm->hwpwm);
	sun4i_pwm_writel(sun4i_pwm, ctrl, PWM_CTRL_REG);
	spin_unlock(&sun4i_pwm->ctrl_lock);

	clk_disable_unprepare(sun4i_pwm->clk);

	return 0;
}

static int sun4i_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
static int sun4i_pwm_config(struct pwm_chip *chip, struct pwm_device *pwm,
			    int duty_ns, int period_ns)
			    int duty_ns, int period_ns)
{
{
@@ -301,6 +466,7 @@ static const struct pwm_ops sun4i_pwm_ops = {
	.set_polarity = sun4i_pwm_set_polarity,
	.set_polarity = sun4i_pwm_set_polarity,
	.enable = sun4i_pwm_enable,
	.enable = sun4i_pwm_enable,
	.disable = sun4i_pwm_disable,
	.disable = sun4i_pwm_disable,
	.apply = sun4i_pwm_apply,
	.get_state = sun4i_pwm_get_state,
	.get_state = sun4i_pwm_get_state,
	.owner = THIS_MODULE,
	.owner = THIS_MODULE,
};
};