Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit bf3a3407 authored by Linus Torvalds's avatar Linus Torvalds
Browse files
Pull slab changes from Pekka Enberg:
 "The biggest change is byte-sized freelist indices which reduces slab
  freelist memory usage:

    https://lkml.org/lkml/2013/12/2/64"

* 'slab/next' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/linux:
  mm: slab/slub: use page->list consistently instead of page->lru
  mm/slab.c: cleanup outdated comments and unify variables naming
  slab: fix wrongly used macro
  slub: fix high order page allocation problem with __GFP_NOFAIL
  slab: Make allocations with GFP_ZERO slightly more efficient
  slab: make more slab management structure off the slab
  slab: introduce byte sized index for the freelist of a slab
  slab: restrict the number of objects in a slab
  slab: introduce helper functions to get/set free object
  slab: factor out calculate nr objects in cache_estimate
parents 321d03c8 34bf6ef9
Loading
Loading
Loading
Loading
+2 −1
Original line number Diff line number Diff line
@@ -124,6 +124,8 @@ struct page {
	union {
		struct list_head lru;	/* Pageout list, eg. active_list
					 * protected by zone->lru_lock !
					 * Can be used as a generic list
					 * by the page owner.
					 */
		struct {		/* slub per cpu partial pages */
			struct page *next;	/* Next partial slab */
@@ -136,7 +138,6 @@ struct page {
#endif
		};

		struct list_head list;	/* slobs list of pages */
		struct slab *slab_page; /* slab fields */
		struct rcu_head rcu_head;	/* Used by SLAB
						 * when destroying via RCU
+11 −0
Original line number Diff line number Diff line
@@ -242,6 +242,17 @@ struct kmem_cache {
#define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
#endif

/*
 * This restriction comes from byte sized index implementation.
 * Page size is normally 2^12 bytes and, in this case, if we want to use
 * byte sized index which can represent 2^8 entries, the size of the object
 * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
 * If minimum size of kmalloc is less than 16, we use it as minimum object
 * size and give up to use byte sized index.
 */
#define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
                               (KMALLOC_MIN_SIZE) : 16)

#ifndef CONFIG_SLOB
extern struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
#ifdef CONFIG_ZONE_DMA
+107 −76
Original line number Diff line number Diff line
@@ -157,6 +157,17 @@
#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
#endif

#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
				<= SLAB_OBJ_MIN_SIZE) ? 1 : 0)

#if FREELIST_BYTE_INDEX
typedef unsigned char freelist_idx_t;
#else
typedef unsigned short freelist_idx_t;
#endif

#define SLAB_OBJ_MAX_NUM (1 << sizeof(freelist_idx_t) * BITS_PER_BYTE)

/*
 * true if a page was allocated from pfmemalloc reserves for network-based
 * swap
@@ -277,8 +288,8 @@ static void kmem_cache_node_init(struct kmem_cache_node *parent)
 * OTOH the cpuarrays can contain lots of objects,
 * which could lock up otherwise freeable slabs.
 */
#define REAPTIMEOUT_CPUC	(2*HZ)
#define REAPTIMEOUT_LIST3	(4*HZ)
#define REAPTIMEOUT_AC		(2*HZ)
#define REAPTIMEOUT_NODE	(4*HZ)

#if STATS
#define	STATS_INC_ACTIVE(x)	((x)->num_active++)
@@ -565,9 +576,31 @@ static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
	return cachep->array[smp_processor_id()];
}

static size_t slab_mgmt_size(size_t nr_objs, size_t align)
static int calculate_nr_objs(size_t slab_size, size_t buffer_size,
				size_t idx_size, size_t align)
{
	return ALIGN(nr_objs * sizeof(unsigned int), align);
	int nr_objs;
	size_t freelist_size;

	/*
	 * Ignore padding for the initial guess. The padding
	 * is at most @align-1 bytes, and @buffer_size is at
	 * least @align. In the worst case, this result will
	 * be one greater than the number of objects that fit
	 * into the memory allocation when taking the padding
	 * into account.
	 */
	nr_objs = slab_size / (buffer_size + idx_size);

	/*
	 * This calculated number will be either the right
	 * amount, or one greater than what we want.
	 */
	freelist_size = slab_size - nr_objs * buffer_size;
	if (freelist_size < ALIGN(nr_objs * idx_size, align))
		nr_objs--;

	return nr_objs;
}

/*
@@ -600,25 +633,9 @@ static void cache_estimate(unsigned long gfporder, size_t buffer_size,
		nr_objs = slab_size / buffer_size;

	} else {
		/*
		 * Ignore padding for the initial guess. The padding
		 * is at most @align-1 bytes, and @buffer_size is at
		 * least @align. In the worst case, this result will
		 * be one greater than the number of objects that fit
		 * into the memory allocation when taking the padding
		 * into account.
		 */
		nr_objs = (slab_size) / (buffer_size + sizeof(unsigned int));

		/*
		 * This calculated number will be either the right
		 * amount, or one greater than what we want.
		 */
		if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
		       > slab_size)
			nr_objs--;

		mgmt_size = slab_mgmt_size(nr_objs, align);
		nr_objs = calculate_nr_objs(slab_size, buffer_size,
					sizeof(freelist_idx_t), align);
		mgmt_size = ALIGN(nr_objs * sizeof(freelist_idx_t), align);
	}
	*num = nr_objs;
	*left_over = slab_size - nr_objs*buffer_size - mgmt_size;
@@ -1067,7 +1084,7 @@ static int init_cache_node_node(int node)

	list_for_each_entry(cachep, &slab_caches, list) {
		/*
		 * Set up the size64 kmemlist for cpu before we can
		 * Set up the kmem_cache_node for cpu before we can
		 * begin anything. Make sure some other cpu on this
		 * node has not already allocated this
		 */
@@ -1076,12 +1093,12 @@ static int init_cache_node_node(int node)
			if (!n)
				return -ENOMEM;
			kmem_cache_node_init(n);
			n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
			    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
			n->next_reap = jiffies + REAPTIMEOUT_NODE +
			    ((unsigned long)cachep) % REAPTIMEOUT_NODE;

			/*
			 * The l3s don't come and go as CPUs come and
			 * go.  slab_mutex is sufficient
			 * The kmem_cache_nodes don't come and go as CPUs
			 * come and go.  slab_mutex is sufficient
			 * protection here.
			 */
			cachep->node[node] = n;
@@ -1406,8 +1423,8 @@ static void __init set_up_node(struct kmem_cache *cachep, int index)
	for_each_online_node(node) {
		cachep->node[node] = &init_kmem_cache_node[index + node];
		cachep->node[node]->next_reap = jiffies +
		    REAPTIMEOUT_LIST3 +
		    ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
		    REAPTIMEOUT_NODE +
		    ((unsigned long)cachep) % REAPTIMEOUT_NODE;
	}
}

@@ -2010,6 +2027,10 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
		if (!num)
			continue;

		/* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
		if (num > SLAB_OBJ_MAX_NUM)
			break;

		if (flags & CFLGS_OFF_SLAB) {
			/*
			 * Max number of objs-per-slab for caches which
@@ -2017,7 +2038,7 @@ static size_t calculate_slab_order(struct kmem_cache *cachep,
			 * looping condition in cache_grow().
			 */
			offslab_limit = size;
			offslab_limit /= sizeof(unsigned int);
			offslab_limit /= sizeof(freelist_idx_t);

 			if (num > offslab_limit)
				break;
@@ -2103,8 +2124,8 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
		}
	}
	cachep->node[numa_mem_id()]->next_reap =
			jiffies + REAPTIMEOUT_LIST3 +
			((unsigned long)cachep) % REAPTIMEOUT_LIST3;
			jiffies + REAPTIMEOUT_NODE +
			((unsigned long)cachep) % REAPTIMEOUT_NODE;

	cpu_cache_get(cachep)->avail = 0;
	cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
@@ -2243,7 +2264,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
	 * it too early on. Always use on-slab management when
	 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
	 */
	if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
	if ((size >= (PAGE_SIZE >> 5)) && !slab_early_init &&
	    !(flags & SLAB_NOLEAKTRACE))
		/*
		 * Size is large, assume best to place the slab management obj
@@ -2252,6 +2273,12 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
		flags |= CFLGS_OFF_SLAB;

	size = ALIGN(size, cachep->align);
	/*
	 * We should restrict the number of objects in a slab to implement
	 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
	 */
	if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
		size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);

	left_over = calculate_slab_order(cachep, size, cachep->align, flags);

@@ -2259,7 +2286,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
		return -E2BIG;

	freelist_size =
		ALIGN(cachep->num * sizeof(unsigned int), cachep->align);
		ALIGN(cachep->num * sizeof(freelist_idx_t), cachep->align);

	/*
	 * If the slab has been placed off-slab, and we have enough space then
@@ -2272,7 +2299,7 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)

	if (flags & CFLGS_OFF_SLAB) {
		/* really off slab. No need for manual alignment */
		freelist_size = cachep->num * sizeof(unsigned int);
		freelist_size = cachep->num * sizeof(freelist_idx_t);

#ifdef CONFIG_PAGE_POISONING
		/* If we're going to use the generic kernel_map_pages()
@@ -2300,10 +2327,10 @@ __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
	if (flags & CFLGS_OFF_SLAB) {
		cachep->freelist_cache = kmalloc_slab(freelist_size, 0u);
		/*
		 * This is a possibility for one of the malloc_sizes caches.
		 * This is a possibility for one of the kmalloc_{dma,}_caches.
		 * But since we go off slab only for object size greater than
		 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
		 * this should not happen at all.
		 * PAGE_SIZE/8, and kmalloc_{dma,}_caches get created
		 * in ascending order,this should not happen at all.
		 * But leave a BUG_ON for some lucky dude.
		 */
		BUG_ON(ZERO_OR_NULL_PTR(cachep->freelist_cache));
@@ -2511,14 +2538,17 @@ int __kmem_cache_shutdown(struct kmem_cache *cachep)

/*
 * Get the memory for a slab management obj.
 * For a slab cache when the slab descriptor is off-slab, slab descriptors
 * always come from malloc_sizes caches.  The slab descriptor cannot
 * come from the same cache which is getting created because,
 * when we are searching for an appropriate cache for these
 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
 * If we are creating a malloc_sizes cache here it would not be visible to
 * kmem_find_general_cachep till the initialization is complete.
 * Hence we cannot have freelist_cache same as the original cache.
 *
 * For a slab cache when the slab descriptor is off-slab, the
 * slab descriptor can't come from the same cache which is being created,
 * Because if it is the case, that means we defer the creation of
 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
 * And we eventually call down to __kmem_cache_create(), which
 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
 * This is a "chicken-and-egg" problem.
 *
 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
 * which are all initialized during kmem_cache_init().
 */
static void *alloc_slabmgmt(struct kmem_cache *cachep,
				   struct page *page, int colour_off,
@@ -2542,9 +2572,15 @@ static void *alloc_slabmgmt(struct kmem_cache *cachep,
	return freelist;
}

static inline unsigned int *slab_freelist(struct page *page)
static inline freelist_idx_t get_free_obj(struct page *page, unsigned char idx)
{
	return (unsigned int *)(page->freelist);
	return ((freelist_idx_t *)page->freelist)[idx];
}

static inline void set_free_obj(struct page *page,
					unsigned char idx, freelist_idx_t val)
{
	((freelist_idx_t *)(page->freelist))[idx] = val;
}

static void cache_init_objs(struct kmem_cache *cachep,
@@ -2589,7 +2625,7 @@ static void cache_init_objs(struct kmem_cache *cachep,
		if (cachep->ctor)
			cachep->ctor(objp);
#endif
		slab_freelist(page)[i] = i;
		set_free_obj(page, i, i);
	}
}

@@ -2608,7 +2644,7 @@ static void *slab_get_obj(struct kmem_cache *cachep, struct page *page,
{
	void *objp;

	objp = index_to_obj(cachep, page, slab_freelist(page)[page->active]);
	objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
	page->active++;
#if DEBUG
	WARN_ON(page_to_nid(virt_to_page(objp)) != nodeid);
@@ -2629,7 +2665,7 @@ static void slab_put_obj(struct kmem_cache *cachep, struct page *page,

	/* Verify double free bug */
	for (i = page->active; i < cachep->num; i++) {
		if (slab_freelist(page)[i] == objnr) {
		if (get_free_obj(page, i) == objnr) {
			printk(KERN_ERR "slab: double free detected in cache "
					"'%s', objp %p\n", cachep->name, objp);
			BUG();
@@ -2637,7 +2673,7 @@ static void slab_put_obj(struct kmem_cache *cachep, struct page *page,
	}
#endif
	page->active--;
	slab_freelist(page)[page->active] = objnr;
	set_free_obj(page, page->active, objnr);
}

/*
@@ -2886,9 +2922,9 @@ static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
		/* move slabp to correct slabp list: */
		list_del(&page->lru);
		if (page->active == cachep->num)
			list_add(&page->list, &n->slabs_full);
			list_add(&page->lru, &n->slabs_full);
		else
			list_add(&page->list, &n->slabs_partial);
			list_add(&page->lru, &n->slabs_partial);
	}

must_grow:
@@ -3245,11 +3281,11 @@ slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
	kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
				 flags);

	if (likely(ptr))
	if (likely(ptr)) {
		kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);

	if (unlikely((flags & __GFP_ZERO) && ptr))
		if (unlikely(flags & __GFP_ZERO))
			memset(ptr, 0, cachep->object_size);
	}

	return ptr;
}
@@ -3310,17 +3346,17 @@ slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
				 flags);
	prefetchw(objp);

	if (likely(objp))
	if (likely(objp)) {
		kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);

	if (unlikely((flags & __GFP_ZERO) && objp))
		if (unlikely(flags & __GFP_ZERO))
			memset(objp, 0, cachep->object_size);
	}

	return objp;
}

/*
 * Caller needs to acquire correct kmem_list's list_lock
 * Caller needs to acquire correct kmem_cache_node's list_lock
 */
static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
		       int node)
@@ -3574,11 +3610,6 @@ static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
	struct kmem_cache *cachep;
	void *ret;

	/* If you want to save a few bytes .text space: replace
	 * __ with kmem_.
	 * Then kmalloc uses the uninlined functions instead of the inline
	 * functions.
	 */
	cachep = kmalloc_slab(size, flags);
	if (unlikely(ZERO_OR_NULL_PTR(cachep)))
		return cachep;
@@ -3670,7 +3701,7 @@ EXPORT_SYMBOL(kfree);
/*
 * This initializes kmem_cache_node or resizes various caches for all nodes.
 */
static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
static int alloc_kmem_cache_node(struct kmem_cache *cachep, gfp_t gfp)
{
	int node;
	struct kmem_cache_node *n;
@@ -3726,8 +3757,8 @@ static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
		}

		kmem_cache_node_init(n);
		n->next_reap = jiffies + REAPTIMEOUT_LIST3 +
				((unsigned long)cachep) % REAPTIMEOUT_LIST3;
		n->next_reap = jiffies + REAPTIMEOUT_NODE +
				((unsigned long)cachep) % REAPTIMEOUT_NODE;
		n->shared = new_shared;
		n->alien = new_alien;
		n->free_limit = (1 + nr_cpus_node(node)) *
@@ -3813,7 +3844,7 @@ static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
		kfree(ccold);
	}
	kfree(new);
	return alloc_kmemlist(cachep, gfp);
	return alloc_kmem_cache_node(cachep, gfp);
}

static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
@@ -3982,7 +4013,7 @@ static void cache_reap(struct work_struct *w)
		if (time_after(n->next_reap, jiffies))
			goto next;

		n->next_reap = jiffies + REAPTIMEOUT_LIST3;
		n->next_reap = jiffies + REAPTIMEOUT_NODE;

		drain_array(searchp, n, n->shared, 0, node);

@@ -4003,7 +4034,7 @@ static void cache_reap(struct work_struct *w)
	next_reap_node();
out:
	/* Set up the next iteration */
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
	schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
}

#ifdef CONFIG_SLABINFO
@@ -4210,7 +4241,7 @@ static void handle_slab(unsigned long *n, struct kmem_cache *c,

		for (j = page->active; j < c->num; j++) {
			/* Skip freed item */
			if (slab_freelist(page)[j] == i) {
			if (get_free_obj(page, j) == i) {
				active = false;
				break;
			}
+5 −5
Original line number Diff line number Diff line
@@ -111,13 +111,13 @@ static inline int slob_page_free(struct page *sp)

static void set_slob_page_free(struct page *sp, struct list_head *list)
{
	list_add(&sp->list, list);
	list_add(&sp->lru, list);
	__SetPageSlobFree(sp);
}

static inline void clear_slob_page_free(struct page *sp)
{
	list_del(&sp->list);
	list_del(&sp->lru);
	__ClearPageSlobFree(sp);
}

@@ -282,7 +282,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)

	spin_lock_irqsave(&slob_lock, flags);
	/* Iterate through each partially free page, try to find room */
	list_for_each_entry(sp, slob_list, list) {
	list_for_each_entry(sp, slob_list, lru) {
#ifdef CONFIG_NUMA
		/*
		 * If there's a node specification, search for a partial
@@ -296,7 +296,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
			continue;

		/* Attempt to alloc */
		prev = sp->list.prev;
		prev = sp->lru.prev;
		b = slob_page_alloc(sp, size, align);
		if (!b)
			continue;
@@ -322,7 +322,7 @@ static void *slob_alloc(size_t size, gfp_t gfp, int align, int node)
		spin_lock_irqsave(&slob_lock, flags);
		sp->units = SLOB_UNITS(PAGE_SIZE);
		sp->freelist = b;
		INIT_LIST_HEAD(&sp->list);
		INIT_LIST_HEAD(&sp->lru);
		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
		set_slob_page_free(sp, slob_list);
		b = slob_page_alloc(sp, size, align);
+3 −2
Original line number Diff line number Diff line
@@ -1352,11 +1352,12 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
	page = alloc_slab_page(alloc_gfp, node, oo);
	if (unlikely(!page)) {
		oo = s->min;
		alloc_gfp = flags;
		/*
		 * Allocation may have failed due to fragmentation.
		 * Try a lower order alloc if possible
		 */
		page = alloc_slab_page(flags, node, oo);
		page = alloc_slab_page(alloc_gfp, node, oo);

		if (page)
			stat(s, ORDER_FALLBACK);
@@ -1366,7 +1367,7 @@ static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
		&& !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
		int pages = 1 << oo_order(oo);

		kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
		kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);

		/*
		 * Objects from caches that have a constructor don't get