Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 1d82de61 authored by Mel Gorman's avatar Mel Gorman Committed by Linus Torvalds
Browse files

mm, vmscan: make kswapd reclaim in terms of nodes

Patch "mm: vmscan: Begin reclaiming pages on a per-node basis" started
thinking of reclaim in terms of nodes but kswapd is still zone-centric.
This patch gets rid of many of the node-based versus zone-based
decisions.

o A node is considered balanced when any eligible lower zone is balanced.
  This eliminates one class of age-inversion problem because we avoid
  reclaiming a newer page just because it's in the wrong zone
o pgdat_balanced disappears because we now only care about one zone being
  balanced.
o Some anomalies related to writeback and congestion tracking being based on
  zones disappear.
o kswapd no longer has to take care to reclaim zones in the reverse order
  that the page allocator uses.
o Most importantly of all, reclaim from node 0 with multiple zones will
  have similar aging and reclaiming characteristics as every
  other node.

Link: http://lkml.kernel.org/r/1467970510-21195-8-git-send-email-mgorman@techsingularity.net


Signed-off-by: default avatarMel Gorman <mgorman@techsingularity.net>
Acked-by: default avatarJohannes Weiner <hannes@cmpxchg.org>
Acked-by: default avatarVlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent f7b60926
Loading
Loading
Loading
Loading
+101 −191
Original line number Original line Diff line number Diff line
@@ -2980,7 +2980,8 @@ unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
}
}
#endif
#endif


static void age_active_anon(struct zone *zone, struct scan_control *sc)
static void age_active_anon(struct pglist_data *pgdat,
				struct zone *zone, struct scan_control *sc)
{
{
	struct mem_cgroup *memcg;
	struct mem_cgroup *memcg;


@@ -2999,84 +3000,14 @@ static void age_active_anon(struct zone *zone, struct scan_control *sc)
	} while (memcg);
	} while (memcg);
}
}


static bool zone_balanced(struct zone *zone, int order, bool highorder,
static bool zone_balanced(struct zone *zone, int order,
			unsigned long balance_gap, int classzone_idx)
			unsigned long balance_gap, int classzone_idx)
{
{
	unsigned long mark = high_wmark_pages(zone) + balance_gap;
	unsigned long mark = high_wmark_pages(zone) + balance_gap;


	/*
	 * When checking from pgdat_balanced(), kswapd should stop and sleep
	 * when it reaches the high order-0 watermark and let kcompactd take
	 * over. Other callers such as wakeup_kswapd() want to determine the
	 * true high-order watermark.
	 */
	if (IS_ENABLED(CONFIG_COMPACTION) && !highorder) {
		mark += (1UL << order);
		order = 0;
	}

	return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
	return zone_watermark_ok_safe(zone, order, mark, classzone_idx);
}
}


/*
 * pgdat_balanced() is used when checking if a node is balanced.
 *
 * For order-0, all zones must be balanced!
 *
 * For high-order allocations only zones that meet watermarks and are in a
 * zone allowed by the callers classzone_idx are added to balanced_pages. The
 * total of balanced pages must be at least 25% of the zones allowed by
 * classzone_idx for the node to be considered balanced. Forcing all zones to
 * be balanced for high orders can cause excessive reclaim when there are
 * imbalanced zones.
 * The choice of 25% is due to
 *   o a 16M DMA zone that is balanced will not balance a zone on any
 *     reasonable sized machine
 *   o On all other machines, the top zone must be at least a reasonable
 *     percentage of the middle zones. For example, on 32-bit x86, highmem
 *     would need to be at least 256M for it to be balance a whole node.
 *     Similarly, on x86-64 the Normal zone would need to be at least 1G
 *     to balance a node on its own. These seemed like reasonable ratios.
 */
static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
{
	unsigned long managed_pages = 0;
	unsigned long balanced_pages = 0;
	int i;

	/* Check the watermark levels */
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

		managed_pages += zone->managed_pages;

		/*
		 * A special case here:
		 *
		 * balance_pgdat() skips over all_unreclaimable after
		 * DEF_PRIORITY. Effectively, it considers them balanced so
		 * they must be considered balanced here as well!
		 */
		if (!pgdat_reclaimable(zone->zone_pgdat)) {
			balanced_pages += zone->managed_pages;
			continue;
		}

		if (zone_balanced(zone, order, false, 0, i))
			balanced_pages += zone->managed_pages;
		else if (!order)
			return false;
	}

	if (order)
		return balanced_pages >= (managed_pages >> 2);
	else
		return true;
}

/*
/*
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * Prepare kswapd for sleeping. This verifies that there are no processes
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
 * waiting in throttle_direct_reclaim() and that watermarks have been met.
@@ -3086,6 +3017,8 @@ static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
					int classzone_idx)
					int classzone_idx)
{
{
	int i;

	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
	if (remaining)
	if (remaining)
		return false;
		return false;
@@ -3106,101 +3039,90 @@ static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, long remaining,
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
	if (waitqueue_active(&pgdat->pfmemalloc_wait))
		wake_up_all(&pgdat->pfmemalloc_wait);
		wake_up_all(&pgdat->pfmemalloc_wait);


	return pgdat_balanced(pgdat, order, classzone_idx);
	for (i = 0; i <= classzone_idx; i++) {
		struct zone *zone = pgdat->node_zones + i;

		if (!populated_zone(zone))
			continue;

		if (zone_balanced(zone, order, 0, classzone_idx))
			return true;
	}

	return false;
}
}


/*
/*
 * kswapd shrinks the zone by the number of pages required to reach
 * kswapd shrinks a node of pages that are at or below the highest usable
 * the high watermark.
 * zone that is currently unbalanced.
 *
 *
 * Returns true if kswapd scanned at least the requested number of pages to
 * Returns true if kswapd scanned at least the requested number of pages to
 * reclaim or if the lack of progress was due to pages under writeback.
 * reclaim or if the lack of progress was due to pages under writeback.
 * This is used to determine if the scanning priority needs to be raised.
 * This is used to determine if the scanning priority needs to be raised.
 */
 */
static bool kswapd_shrink_zone(struct zone *zone,
static bool kswapd_shrink_node(pg_data_t *pgdat,
			       int classzone_idx,
			       int classzone_idx,
			       struct scan_control *sc)
			       struct scan_control *sc)
{
{
	unsigned long balance_gap;
	struct zone *zone;
	bool lowmem_pressure;
	int z;
	struct pglist_data *pgdat = zone->zone_pgdat;


	/* Reclaim above the high watermark. */
	/* Reclaim a number of pages proportional to the number of zones */
	sc->nr_to_reclaim = max(SWAP_CLUSTER_MAX, high_wmark_pages(zone));
	sc->nr_to_reclaim = 0;
	for (z = 0; z <= classzone_idx; z++) {
		zone = pgdat->node_zones + z;
		if (!populated_zone(zone))
			continue;


	/*
		sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
	 * We put equal pressure on every zone, unless one zone has way too
	}
	 * many pages free already. The "too many pages" is defined as the
	 * high wmark plus a "gap" where the gap is either the low
	 * watermark or 1% of the zone, whichever is smaller.
	 */
	balance_gap = min(low_wmark_pages(zone), DIV_ROUND_UP(
			zone->managed_pages, KSWAPD_ZONE_BALANCE_GAP_RATIO));


	/*
	/*
	 * If there is no low memory pressure or the zone is balanced then no
	 * Historically care was taken to put equal pressure on all zones but
	 * reclaim is necessary
	 * now pressure is applied based on node LRU order.
	 */
	 */
	lowmem_pressure = (buffer_heads_over_limit && is_highmem(zone));
	shrink_node(pgdat, sc, classzone_idx);
	if (!lowmem_pressure && zone_balanced(zone, sc->order, false,
						balance_gap, classzone_idx))
		return true;

	shrink_node(zone->zone_pgdat, sc, classzone_idx);

	/* TODO: ANOMALY */
	clear_bit(PGDAT_WRITEBACK, &pgdat->flags);


	/*
	/*
	 * If a zone reaches its high watermark, consider it to be no longer
	 * Fragmentation may mean that the system cannot be rebalanced for
	 * congested. It's possible there are dirty pages backed by congested
	 * high-order allocations. If twice the allocation size has been
	 * BDIs but as pressure is relieved, speculatively avoid congestion
	 * reclaimed then recheck watermarks only at order-0 to prevent
	 * waits.
	 * excessive reclaim. Assume that a process requested a high-order
	 * can direct reclaim/compact.
	 */
	 */
	if (pgdat_reclaimable(zone->zone_pgdat) &&
	if (sc->order && sc->nr_reclaimed >= 2UL << sc->order)
	    zone_balanced(zone, sc->order, false, 0, classzone_idx)) {
		sc->order = 0;
		clear_bit(PGDAT_CONGESTED, &pgdat->flags);
		clear_bit(PGDAT_DIRTY, &pgdat->flags);
	}


	return sc->nr_scanned >= sc->nr_to_reclaim;
	return sc->nr_scanned >= sc->nr_to_reclaim;
}
}


/*
/*
 * For kswapd, balance_pgdat() will work across all this node's zones until
 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
 * they are all at high_wmark_pages(zone).
 * that are eligible for use by the caller until at least one zone is
 *
 * balanced.
 * Returns the highest zone idx kswapd was reclaiming at
 *
 *
 * There is special handling here for zones which are full of pinned pages.
 * Returns the order kswapd finished reclaiming at.
 * This can happen if the pages are all mlocked, or if they are all used by
 * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
 * What we do is to detect the case where all pages in the zone have been
 * scanned twice and there has been zero successful reclaim.  Mark the zone as
 * dead and from now on, only perform a short scan.  Basically we're polling
 * the zone for when the problem goes away.
 *
 *
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
 * lower zones regardless of the number of free pages in the lower zones. This
 * or lower is eligible for reclaim until at least one usable zone is
 * interoperates with the page allocator fallback scheme to ensure that aging
 * balanced.
 * of pages is balanced across the zones.
 */
 */
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
{
{
	int i;
	int i;
	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_reclaimed;
	unsigned long nr_soft_scanned;
	unsigned long nr_soft_scanned;
	struct zone *zone;
	struct scan_control sc = {
	struct scan_control sc = {
		.gfp_mask = GFP_KERNEL,
		.gfp_mask = GFP_KERNEL,
		.reclaim_idx = MAX_NR_ZONES - 1,
		.order = order,
		.order = order,
		.priority = DEF_PRIORITY,
		.priority = DEF_PRIORITY,
		.may_writepage = !laptop_mode,
		.may_writepage = !laptop_mode,
		.may_unmap = 1,
		.may_unmap = 1,
		.may_swap = 1,
		.may_swap = 1,
		.reclaim_idx = classzone_idx,
	};
	};
	count_vm_event(PAGEOUTRUN);
	count_vm_event(PAGEOUTRUN);


@@ -3211,21 +3133,10 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)


		/* Scan from the highest requested zone to dma */
		/* Scan from the highest requested zone to dma */
		for (i = classzone_idx; i >= 0; i--) {
		for (i = classzone_idx; i >= 0; i--) {
			struct zone *zone = pgdat->node_zones + i;
			zone = pgdat->node_zones + i;

			if (!populated_zone(zone))
			if (!populated_zone(zone))
				continue;
				continue;


			if (sc.priority != DEF_PRIORITY &&
			    !pgdat_reclaimable(zone->zone_pgdat))
				continue;

			/*
			 * Do some background aging of the anon list, to give
			 * pages a chance to be referenced before reclaiming.
			 */
			age_active_anon(zone, &sc);

			/*
			/*
			 * If the number of buffer_heads in the machine
			 * If the number of buffer_heads in the machine
			 * exceeds the maximum allowed level and this node
			 * exceeds the maximum allowed level and this node
@@ -3233,19 +3144,17 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
			 * it to relieve lowmem pressure.
			 * it to relieve lowmem pressure.
			 */
			 */
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
			if (buffer_heads_over_limit && is_highmem_idx(i)) {
				end_zone = i;
				classzone_idx = i;
				break;
				break;
			}
			}


			if (!zone_balanced(zone, order, false, 0, 0)) {
			if (!zone_balanced(zone, order, 0, 0)) {
				end_zone = i;
				classzone_idx = i;
				break;
				break;
			} else {
			} else {
				/*
				/*
				 * If balanced, clear the dirty and congested
				 * If any eligible zone is balanced then the
				 * flags
				 * node is not considered congested or dirty.
				 *
				 * TODO: ANOMALY
				 */
				 */
				clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
				clear_bit(PGDAT_CONGESTED, &zone->zone_pgdat->flags);
				clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
				clear_bit(PGDAT_DIRTY, &zone->zone_pgdat->flags);
@@ -3256,51 +3165,34 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
			goto out;
			goto out;


		/*
		/*
		 * If we're getting trouble reclaiming, start doing writepage
		 * Do some background aging of the anon list, to give
		 * even in laptop mode.
		 * pages a chance to be referenced before reclaiming. All
		 * pages are rotated regardless of classzone as this is
		 * about consistent aging.
		 */
		 */
		if (sc.priority < DEF_PRIORITY - 2)
		age_active_anon(pgdat, &pgdat->node_zones[MAX_NR_ZONES - 1], &sc);
			sc.may_writepage = 1;


		/*
		/*
		 * Continue scanning in the highmem->dma direction stopping at
		 * If we're getting trouble reclaiming, start doing writepage
		 * the last zone which needs scanning. This may reclaim lowmem
		 * even in laptop mode.
		 * pages that are not necessary for zone balancing but it
		 * preserves LRU ordering. It is assumed that the bulk of
		 * allocation requests can use arbitrary zones with the
		 * possible exception of big highmem:lowmem configurations.
		 */
		 */
		for (i = end_zone; i >= 0; i--) {
		if (sc.priority < DEF_PRIORITY - 2 || !pgdat_reclaimable(pgdat))
			struct zone *zone = pgdat->node_zones + i;
			sc.may_writepage = 1;

			if (!populated_zone(zone))
				continue;

			if (sc.priority != DEF_PRIORITY &&
			    !pgdat_reclaimable(zone->zone_pgdat))
				continue;


		/* Call soft limit reclaim before calling shrink_node. */
		sc.nr_scanned = 0;
		sc.nr_scanned = 0;
			sc.reclaim_idx = i;

		nr_soft_scanned = 0;
		nr_soft_scanned = 0;
			/*
		nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone, sc.order,
			 * Call soft limit reclaim before calling shrink_zone.
						sc.gfp_mask, &nr_soft_scanned);
			 */
			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
							order, sc.gfp_mask,
							&nr_soft_scanned);
		sc.nr_reclaimed += nr_soft_reclaimed;
		sc.nr_reclaimed += nr_soft_reclaimed;


		/*
		/*
			 * There should be no need to raise the scanning
		 * There should be no need to raise the scanning priority if
			 * priority if enough pages are already being scanned
		 * enough pages are already being scanned that that high
			 * that that high watermark would be met at 100%
		 * watermark would be met at 100% efficiency.
			 * efficiency.
		 */
		 */
			if (kswapd_shrink_zone(zone, end_zone, &sc))
		if (kswapd_shrink_node(pgdat, classzone_idx, &sc))
			raise_priority = false;
			raise_priority = false;
		}


		/*
		/*
		 * If the low watermark is met there is no need for processes
		 * If the low watermark is met there is no need for processes
@@ -3315,21 +3207,38 @@ static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
		if (try_to_freeze() || kthread_should_stop())
		if (try_to_freeze() || kthread_should_stop())
			break;
			break;


		/*
		 * Stop reclaiming if any eligible zone is balanced and clear
		 * node writeback or congested.
		 */
		for (i = 0; i <= classzone_idx; i++) {
			zone = pgdat->node_zones + i;
			if (!populated_zone(zone))
				continue;

			if (zone_balanced(zone, sc.order, 0, classzone_idx)) {
				clear_bit(PGDAT_CONGESTED, &pgdat->flags);
				clear_bit(PGDAT_DIRTY, &pgdat->flags);
				goto out;
			}
		}

		/*
		/*
		 * Raise priority if scanning rate is too low or there was no
		 * Raise priority if scanning rate is too low or there was no
		 * progress in reclaiming pages
		 * progress in reclaiming pages
		 */
		 */
		if (raise_priority || !sc.nr_reclaimed)
		if (raise_priority || !sc.nr_reclaimed)
			sc.priority--;
			sc.priority--;
	} while (sc.priority >= 1 &&
	} while (sc.priority >= 1);
			!pgdat_balanced(pgdat, order, classzone_idx));


out:
out:
	/*
	/*
	 * Return the highest zone idx we were reclaiming at so
	 * Return the order kswapd stopped reclaiming at as
	 * prepare_kswapd_sleep() makes the same decisions as here.
	 * prepare_kswapd_sleep() takes it into account. If another caller
	 * entered the allocator slow path while kswapd was awake, order will
	 * remain at the higher level.
	 */
	 */
	return end_zone;
	return sc.order;
}
}


static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
static void kswapd_try_to_sleep(pg_data_t *pgdat, int order,
@@ -3486,8 +3395,9 @@ static int kswapd(void *p)
		 */
		 */
		if (!ret) {
		if (!ret) {
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
			balanced_classzone_idx = balance_pgdat(pgdat, order,

								classzone_idx);
			/* return value ignored until next patch */
			balance_pgdat(pgdat, order, classzone_idx);
		}
		}
	}
	}


@@ -3517,7 +3427,7 @@ void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
	}
	}
	if (!waitqueue_active(&pgdat->kswapd_wait))
	if (!waitqueue_active(&pgdat->kswapd_wait))
		return;
		return;
	if (zone_balanced(zone, order, true, 0, 0))
	if (zone_balanced(zone, order, 0, 0))
		return;
		return;


	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);