Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 02b0cc34 authored by Amelie Delaunay's avatar Amelie Delaunay Committed by Alexandre Belloni
Browse files

rtc: stm32: rework register management to prepare other version of RTC



This patch reworks register/bits management because next version of RTC
uses the same way of working but with different register's offset or bits
moved in new registers.

Signed-off-by: default avatarAmelie Delaunay <amelie.delaunay@st.com>
Signed-off-by: default avatarAlexandre Belloni <alexandre.belloni@bootlin.com>
parent 819cbde5
Loading
Loading
Loading
Loading
+127 −57
Original line number Original line Diff line number Diff line
@@ -16,15 +16,6 @@


#define DRIVER_NAME "stm32_rtc"
#define DRIVER_NAME "stm32_rtc"


/* STM32 RTC registers */
#define STM32_RTC_TR		0x00
#define STM32_RTC_DR		0x04
#define STM32_RTC_CR		0x08
#define STM32_RTC_ISR		0x0C
#define STM32_RTC_PRER		0x10
#define STM32_RTC_ALRMAR	0x1C
#define STM32_RTC_WPR		0x24

/* STM32_RTC_TR bit fields  */
/* STM32_RTC_TR bit fields  */
#define STM32_RTC_TR_SEC_SHIFT		0
#define STM32_RTC_TR_SEC_SHIFT		0
#define STM32_RTC_TR_SEC		GENMASK(6, 0)
#define STM32_RTC_TR_SEC		GENMASK(6, 0)
@@ -85,7 +76,26 @@
#define RTC_WPR_2ND_KEY			0x53
#define RTC_WPR_2ND_KEY			0x53
#define RTC_WPR_WRONG_KEY		0xFF
#define RTC_WPR_WRONG_KEY		0xFF


struct stm32_rtc;

struct stm32_rtc_registers {
	u8 tr;
	u8 dr;
	u8 cr;
	u8 isr;
	u8 prer;
	u8 alrmar;
	u8 wpr;
};

struct stm32_rtc_events {
	u32 alra;
};

struct stm32_rtc_data {
struct stm32_rtc_data {
	const struct stm32_rtc_registers regs;
	const struct stm32_rtc_events events;
	void (*clear_events)(struct stm32_rtc *rtc, unsigned int flags);
	bool has_pclk;
	bool has_pclk;
	bool need_dbp;
	bool need_dbp;
};
};
@@ -96,30 +106,35 @@ struct stm32_rtc {
	struct regmap *dbp;
	struct regmap *dbp;
	unsigned int dbp_reg;
	unsigned int dbp_reg;
	unsigned int dbp_mask;
	unsigned int dbp_mask;
	struct stm32_rtc_data *data;
	struct clk *pclk;
	struct clk *pclk;
	struct clk *rtc_ck;
	struct clk *rtc_ck;
	const struct stm32_rtc_data *data;
	int irq_alarm;
	int irq_alarm;
};
};


static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
{
{
	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + STM32_RTC_WPR);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + STM32_RTC_WPR);

	writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + regs->wpr);
	writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + regs->wpr);
}
}


static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
{
{
	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + STM32_RTC_WPR);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;

	writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + regs->wpr);
}
}


static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
{
{
	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int isr = readl_relaxed(rtc->base + regs->isr);


	if (!(isr & STM32_RTC_ISR_INITF)) {
	if (!(isr & STM32_RTC_ISR_INITF)) {
		isr |= STM32_RTC_ISR_INIT;
		isr |= STM32_RTC_ISR_INIT;
		writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
		writel_relaxed(isr, rtc->base + regs->isr);


		/*
		/*
		 * It takes around 2 rtc_ck clock cycles to enter in
		 * It takes around 2 rtc_ck clock cycles to enter in
@@ -128,7 +143,7 @@ static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
		 * 1MHz, we poll every 10 us with a timeout of 100ms.
		 * 1MHz, we poll every 10 us with a timeout of 100ms.
		 */
		 */
		return readl_relaxed_poll_timeout_atomic(
		return readl_relaxed_poll_timeout_atomic(
					rtc->base + STM32_RTC_ISR,
					rtc->base + regs->isr,
					isr, (isr & STM32_RTC_ISR_INITF),
					isr, (isr & STM32_RTC_ISR_INITF),
					10, 100000);
					10, 100000);
	}
	}
@@ -138,40 +153,50 @@ static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)


static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
{
{
	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int isr = readl_relaxed(rtc->base + regs->isr);


	isr &= ~STM32_RTC_ISR_INIT;
	isr &= ~STM32_RTC_ISR_INIT;
	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
	writel_relaxed(isr, rtc->base + regs->isr);
}
}


static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
{
{
	unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int isr = readl_relaxed(rtc->base + regs->isr);


	isr &= ~STM32_RTC_ISR_RSF;
	isr &= ~STM32_RTC_ISR_RSF;
	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
	writel_relaxed(isr, rtc->base + regs->isr);


	/*
	/*
	 * Wait for RSF to be set to ensure the calendar registers are
	 * Wait for RSF to be set to ensure the calendar registers are
	 * synchronised, it takes around 2 rtc_ck clock cycles
	 * synchronised, it takes around 2 rtc_ck clock cycles
	 */
	 */
	return readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
	return readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
						 isr,
						 isr,
						 (isr & STM32_RTC_ISR_RSF),
						 (isr & STM32_RTC_ISR_RSF),
						 10, 100000);
						 10, 100000);
}
}


static void stm32_rtc_clear_event_flags(struct stm32_rtc *rtc,
					unsigned int flags)
{
	rtc->data->clear_events(rtc, flags);
}

static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
{
{
	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
	struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
	unsigned int isr, cr;
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	const struct stm32_rtc_events *evts = &rtc->data->events;
	unsigned int status, cr;


	mutex_lock(&rtc->rtc_dev->ops_lock);
	mutex_lock(&rtc->rtc_dev->ops_lock);


	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
	status = readl_relaxed(rtc->base + regs->isr);
	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
	cr = readl_relaxed(rtc->base + regs->cr);


	if ((isr & STM32_RTC_ISR_ALRAF) &&
	if ((status & evts->alra) &&
	    (cr & STM32_RTC_CR_ALRAIE)) {
	    (cr & STM32_RTC_CR_ALRAIE)) {
		/* Alarm A flag - Alarm interrupt */
		/* Alarm A flag - Alarm interrupt */
		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
		dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
@@ -179,9 +204,8 @@ static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
		/* Pass event to the kernel */
		/* Pass event to the kernel */
		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
		rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);


		/* Clear event flag, otherwise new events won't be received */
		/* Clear event flags, otherwise new events won't be received */
		writel_relaxed(isr & ~STM32_RTC_ISR_ALRAF,
		stm32_rtc_clear_event_flags(rtc, evts->alra);
			       rtc->base + STM32_RTC_ISR);
	}
	}


	mutex_unlock(&rtc->rtc_dev->ops_lock);
	mutex_unlock(&rtc->rtc_dev->ops_lock);
@@ -228,11 +252,12 @@ static void bcd2tm(struct rtc_time *tm)
static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int tr, dr;
	unsigned int tr, dr;


	/* Time and Date in BCD format */
	/* Time and Date in BCD format */
	tr = readl_relaxed(rtc->base + STM32_RTC_TR);
	tr = readl_relaxed(rtc->base + regs->tr);
	dr = readl_relaxed(rtc->base + STM32_RTC_DR);
	dr = readl_relaxed(rtc->base + regs->dr);


	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
	tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
	tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
@@ -253,6 +278,7 @@ static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int tr, dr;
	unsigned int tr, dr;
	int ret = 0;
	int ret = 0;


@@ -277,8 +303,8 @@ static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
		goto end;
		goto end;
	}
	}


	writel_relaxed(tr, rtc->base + STM32_RTC_TR);
	writel_relaxed(tr, rtc->base + regs->tr);
	writel_relaxed(dr, rtc->base + STM32_RTC_DR);
	writel_relaxed(dr, rtc->base + regs->dr);


	stm32_rtc_exit_init_mode(rtc);
	stm32_rtc_exit_init_mode(rtc);


@@ -292,12 +318,14 @@ static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	const struct stm32_rtc_events *evts = &rtc->data->events;
	struct rtc_time *tm = &alrm->time;
	struct rtc_time *tm = &alrm->time;
	unsigned int alrmar, cr, isr;
	unsigned int alrmar, cr, status;


	alrmar = readl_relaxed(rtc->base + STM32_RTC_ALRMAR);
	alrmar = readl_relaxed(rtc->base + regs->alrmar);
	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
	cr = readl_relaxed(rtc->base + regs->cr);
	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
	status = readl_relaxed(rtc->base + regs->isr);


	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
	if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
		/*
		/*
@@ -350,7 +378,7 @@ static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
	bcd2tm(tm);
	bcd2tm(tm);


	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
	alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
	alrm->pending = (isr & STM32_RTC_ISR_ALRAF) ? 1 : 0;
	alrm->pending = (status & evts->alra) ? 1 : 0;


	return 0;
	return 0;
}
}
@@ -358,9 +386,11 @@ static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	unsigned int isr, cr;
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	const struct stm32_rtc_events *evts = &rtc->data->events;
	unsigned int cr;


	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
	cr = readl_relaxed(rtc->base + regs->cr);


	stm32_rtc_wpr_unlock(rtc);
	stm32_rtc_wpr_unlock(rtc);


@@ -369,12 +399,10 @@ static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
		cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
	else
	else
		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
		cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
	writel_relaxed(cr, rtc->base + regs->cr);


	/* Clear event flag, otherwise new events won't be received */
	/* Clear event flags, otherwise new events won't be received */
	isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
	stm32_rtc_clear_event_flags(rtc, evts->alra);
	isr &= ~STM32_RTC_ISR_ALRAF;
	writel_relaxed(isr, rtc->base + STM32_RTC_ISR);


	stm32_rtc_wpr_lock(rtc);
	stm32_rtc_wpr_lock(rtc);


@@ -383,9 +411,10 @@ static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)


static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
{
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
	int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
	unsigned int dr = readl_relaxed(rtc->base + STM32_RTC_DR);
	unsigned int dr = readl_relaxed(rtc->base + regs->dr);
	unsigned int tr = readl_relaxed(rtc->base + STM32_RTC_TR);
	unsigned int tr = readl_relaxed(rtc->base + regs->tr);


	cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
	cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
	cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
	cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
@@ -419,6 +448,7 @@ static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
{
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	struct stm32_rtc *rtc = dev_get_drvdata(dev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	struct rtc_time *tm = &alrm->time;
	struct rtc_time *tm = &alrm->time;
	unsigned int cr, isr, alrmar;
	unsigned int cr, isr, alrmar;
	int ret = 0;
	int ret = 0;
@@ -450,15 +480,15 @@ static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
	stm32_rtc_wpr_unlock(rtc);
	stm32_rtc_wpr_unlock(rtc);


	/* Disable Alarm */
	/* Disable Alarm */
	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
	cr = readl_relaxed(rtc->base + regs->cr);
	cr &= ~STM32_RTC_CR_ALRAE;
	cr &= ~STM32_RTC_CR_ALRAE;
	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
	writel_relaxed(cr, rtc->base + regs->cr);


	/*
	/*
	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
	 * Poll Alarm write flag to be sure that Alarm update is allowed: it
	 * takes around 2 rtc_ck clock cycles
	 * takes around 2 rtc_ck clock cycles
	 */
	 */
	ret = readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
	ret = readl_relaxed_poll_timeout_atomic(rtc->base + regs->isr,
						isr,
						isr,
						(isr & STM32_RTC_ISR_ALRAWF),
						(isr & STM32_RTC_ISR_ALRAWF),
						10, 100000);
						10, 100000);
@@ -469,7 +499,7 @@ static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
	}
	}


	/* Write to Alarm register */
	/* Write to Alarm register */
	writel_relaxed(alrmar, rtc->base + STM32_RTC_ALRMAR);
	writel_relaxed(alrmar, rtc->base + regs->alrmar);


	if (alrm->enabled)
	if (alrm->enabled)
		stm32_rtc_alarm_irq_enable(dev, 1);
		stm32_rtc_alarm_irq_enable(dev, 1);
@@ -490,14 +520,50 @@ static const struct rtc_class_ops stm32_rtc_ops = {
	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
	.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
};
};


static void stm32_rtc_clear_events(struct stm32_rtc *rtc,
				   unsigned int flags)
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;

	/* Flags are cleared by writing 0 in RTC_ISR */
	writel_relaxed(readl_relaxed(rtc->base + regs->isr) & ~flags,
		       rtc->base + regs->isr);
}

static const struct stm32_rtc_data stm32_rtc_data = {
static const struct stm32_rtc_data stm32_rtc_data = {
	.has_pclk = false,
	.has_pclk = false,
	.need_dbp = true,
	.need_dbp = true,
	.regs = {
		.tr = 0x00,
		.dr = 0x04,
		.cr = 0x08,
		.isr = 0x0C,
		.prer = 0x10,
		.alrmar = 0x1C,
		.wpr = 0x24,
	},
	.events = {
		.alra = STM32_RTC_ISR_ALRAF,
	},
	.clear_events = stm32_rtc_clear_events,
};
};


static const struct stm32_rtc_data stm32h7_rtc_data = {
static const struct stm32_rtc_data stm32h7_rtc_data = {
	.has_pclk = true,
	.has_pclk = true,
	.need_dbp = true,
	.need_dbp = true,
	.regs = {
		.tr = 0x00,
		.dr = 0x04,
		.cr = 0x08,
		.isr = 0x0C,
		.prer = 0x10,
		.alrmar = 0x1C,
		.wpr = 0x24,
	},
	.events = {
		.alra = STM32_RTC_ISR_ALRAF,
	},
	.clear_events = stm32_rtc_clear_events,
};
};


static const struct of_device_id stm32_rtc_of_match[] = {
static const struct of_device_id stm32_rtc_of_match[] = {
@@ -510,6 +576,7 @@ MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
static int stm32_rtc_init(struct platform_device *pdev,
static int stm32_rtc_init(struct platform_device *pdev,
			  struct stm32_rtc *rtc)
			  struct stm32_rtc *rtc)
{
{
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
	unsigned int rate;
	unsigned int rate;
	int ret = 0;
	int ret = 0;
@@ -550,14 +617,14 @@ static int stm32_rtc_init(struct platform_device *pdev,
	}
	}


	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
	writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
	writel_relaxed(prer, rtc->base + regs->prer);
	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
	writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
	writel_relaxed(prer, rtc->base + regs->prer);


	/* Force 24h time format */
	/* Force 24h time format */
	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
	cr = readl_relaxed(rtc->base + regs->cr);
	cr &= ~STM32_RTC_CR_FMT;
	cr &= ~STM32_RTC_CR_FMT;
	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
	writel_relaxed(cr, rtc->base + regs->cr);


	stm32_rtc_exit_init_mode(rtc);
	stm32_rtc_exit_init_mode(rtc);


@@ -571,6 +638,7 @@ static int stm32_rtc_init(struct platform_device *pdev,
static int stm32_rtc_probe(struct platform_device *pdev)
static int stm32_rtc_probe(struct platform_device *pdev)
{
{
	struct stm32_rtc *rtc;
	struct stm32_rtc *rtc;
	const struct stm32_rtc_registers *regs;
	struct resource *res;
	struct resource *res;
	int ret;
	int ret;


@@ -585,6 +653,7 @@ static int stm32_rtc_probe(struct platform_device *pdev)


	rtc->data = (struct stm32_rtc_data *)
	rtc->data = (struct stm32_rtc_data *)
		    of_device_get_match_data(&pdev->dev);
		    of_device_get_match_data(&pdev->dev);
	regs = &rtc->data->regs;


	if (rtc->data->need_dbp) {
	if (rtc->data->need_dbp) {
		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
		rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
@@ -688,7 +757,7 @@ static int stm32_rtc_probe(struct platform_device *pdev)
	 * If INITS flag is reset (calendar year field set to 0x00), calendar
	 * If INITS flag is reset (calendar year field set to 0x00), calendar
	 * must be initialized
	 * must be initialized
	 */
	 */
	if (!(readl_relaxed(rtc->base + STM32_RTC_ISR) & STM32_RTC_ISR_INITS))
	if (!(readl_relaxed(rtc->base + regs->isr) & STM32_RTC_ISR_INITS))
		dev_warn(&pdev->dev, "Date/Time must be initialized\n");
		dev_warn(&pdev->dev, "Date/Time must be initialized\n");


	return 0;
	return 0;
@@ -708,13 +777,14 @@ static int stm32_rtc_probe(struct platform_device *pdev)
static int stm32_rtc_remove(struct platform_device *pdev)
static int stm32_rtc_remove(struct platform_device *pdev)
{
{
	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
	struct stm32_rtc *rtc = platform_get_drvdata(pdev);
	const struct stm32_rtc_registers *regs = &rtc->data->regs;
	unsigned int cr;
	unsigned int cr;


	/* Disable interrupts */
	/* Disable interrupts */
	stm32_rtc_wpr_unlock(rtc);
	stm32_rtc_wpr_unlock(rtc);
	cr = readl_relaxed(rtc->base + STM32_RTC_CR);
	cr = readl_relaxed(rtc->base + regs->cr);
	cr &= ~STM32_RTC_CR_ALRAIE;
	cr &= ~STM32_RTC_CR_ALRAIE;
	writel_relaxed(cr, rtc->base + STM32_RTC_CR);
	writel_relaxed(cr, rtc->base + regs->cr);
	stm32_rtc_wpr_lock(rtc);
	stm32_rtc_wpr_lock(rtc);


	clk_disable_unprepare(rtc->rtc_ck);
	clk_disable_unprepare(rtc->rtc_ck);