Loading fs/btrfs/ctree.c +186 −63 Original line number Diff line number Diff line Loading @@ -20,6 +20,11 @@ static void release_path(struct ctree_root *root, struct ctree_path *p) } } /* * The leaf data grows from end-to-front in the node. * this returns the address of the start of the last item, * which is the stop of the leaf data stack */ static inline unsigned int leaf_data_end(struct leaf *leaf) { unsigned int nr = leaf->header.nritems; Loading @@ -28,6 +33,11 @@ static inline unsigned int leaf_data_end(struct leaf *leaf) return leaf->items[nr-1].offset; } /* * The space between the end of the leaf items and * the start of the leaf data. IOW, how much room * the leaf has left for both items and data */ static inline int leaf_free_space(struct leaf *leaf) { int data_end = leaf_data_end(leaf); Loading @@ -36,6 +46,9 @@ static inline int leaf_free_space(struct leaf *leaf) return (char *)(leaf->data + data_end) - (char *)items_end; } /* * compare two keys in a memcmp fashion */ int comp_keys(struct key *k1, struct key *k2) { if (k1->objectid > k2->objectid) Loading @@ -52,6 +65,16 @@ int comp_keys(struct key *k1, struct key *k2) return -1; return 0; } /* * search for key in the array p. items p are item_size apart * and there are 'max' items in p * the slot in the array is returned via slot, and it points to * the place where you would insert key if it is not found in * the array. * * slot may point to max if the key is bigger than all of the keys */ int generic_bin_search(char *p, int item_size, struct key *key, int max, int *slot) { Loading Loading @@ -92,6 +115,14 @@ int bin_search(struct node *c, struct key *key, int *slot) return -1; } /* * look for key in the tree. path is filled in with nodes along the way * if key is found, we return zero and you can find the item in the leaf * level of the path (level 0) * * If the key isn't found, the path points to the slot where it should * be inserted. */ int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p) { struct tree_buffer *b = root->node; Loading Loading @@ -120,12 +151,18 @@ int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p) return -1; } /* * adjust the pointers going up the tree, starting at level * making sure the right key of each node is points to 'key'. * This is used after shifting pointers to the left, so it stops * fixing up pointers when a given leaf/node is not in slot 0 of the * higher levels */ static void fixup_low_keys(struct ctree_root *root, struct ctree_path *path, struct key *key, int level) { int i; /* adjust the pointers going up the tree */ for (i = level; i < MAX_LEVEL; i++) { struct node *t; int tslot = path->slots[i]; Loading @@ -139,64 +176,16 @@ static void fixup_low_keys(struct ctree_root *root, } } int __insert_ptr(struct ctree_root *root, struct ctree_path *path, struct key *key, u64 blocknr, int slot, int level) { struct node *c; struct node *lower; struct key *lower_key; int nritems; /* need a new root */ if (!path->nodes[level]) { struct tree_buffer *t; t = alloc_free_block(root); c = &t->node; memset(c, 0, sizeof(c)); c->header.nritems = 2; c->header.flags = node_level(level); c->header.blocknr = t->blocknr; lower = &path->nodes[level-1]->node; if (is_leaf(lower->header.flags)) lower_key = &((struct leaf *)lower)->items[0].key; else lower_key = lower->keys; memcpy(c->keys, lower_key, sizeof(struct key)); memcpy(c->keys + 1, key, sizeof(struct key)); c->blockptrs[0] = path->nodes[level-1]->blocknr; c->blockptrs[1] = blocknr; /* the path has an extra ref to root->node */ tree_block_release(root, root->node); root->node = t; t->count++; write_tree_block(root, t); path->nodes[level] = t; path->slots[level] = 0; if (c->keys[1].objectid == 0) BUG(); return 0; } lower = &path->nodes[level]->node; nritems = lower->header.nritems; if (slot > nritems) BUG(); if (nritems == NODEPTRS_PER_BLOCK) BUG(); if (slot != nritems) { memmove(lower->keys + slot + 1, lower->keys + slot, (nritems - slot) * sizeof(struct key)); memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot, (nritems - slot) * sizeof(u64)); } memcpy(lower->keys + slot, key, sizeof(struct key)); lower->blockptrs[slot] = blocknr; lower->header.nritems++; if (lower->keys[1].objectid == 0) BUG(); write_tree_block(root, path->nodes[level]); return 0; } /* * try to push data from one node into the next node left in the * tree. The src node is found at specified level in the path. * If some bytes were pushed, return 0, otherwise return 1. * * Lower nodes/leaves in the path are not touched, higher nodes may * be modified to reflect the push. * * The path is altered to reflect the push. */ int push_node_left(struct ctree_root *root, struct ctree_path *path, int level) { int slot; Loading Loading @@ -259,6 +248,16 @@ int push_node_left(struct ctree_root *root, struct ctree_path *path, int level) return 0; } /* * try to push data from one node into the next node right in the * tree. The src node is found at specified level in the path. * If some bytes were pushed, return 0, otherwise return 1. * * Lower nodes/leaves in the path are not touched, higher nodes may * be modified to reflect the push. * * The path is altered to reflect the push. */ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) { int slot; Loading @@ -270,8 +269,11 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) int dst_nritems; int src_nritems; /* can't push from the root */ if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0) return 1; /* only try to push inside the node higher up */ slot = path->slots[level + 1]; if (slot == NODEPTRS_PER_BLOCK - 1) return 1; Loading Loading @@ -315,7 +317,7 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) write_tree_block(root, t); write_tree_block(root, src_buffer); /* then fixup the leaf pointer in the path */ /* then fixup the pointers in the path */ if (path->slots[level] >= src->header.nritems) { path->slots[level] -= src->header.nritems; tree_block_release(root, path->nodes[level]); Loading @@ -327,6 +329,76 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) return 0; } /* * worker function to insert a single pointer in a node. * the node should have enough room for the pointer already * slot and level indicate where you want the key to go, and * blocknr is the block the key points to. */ int __insert_ptr(struct ctree_root *root, struct ctree_path *path, struct key *key, u64 blocknr, int slot, int level) { struct node *c; struct node *lower; struct key *lower_key; int nritems; /* need a new root */ if (!path->nodes[level]) { struct tree_buffer *t; t = alloc_free_block(root); c = &t->node; memset(c, 0, sizeof(c)); c->header.nritems = 2; c->header.flags = node_level(level); c->header.blocknr = t->blocknr; lower = &path->nodes[level-1]->node; if (is_leaf(lower->header.flags)) lower_key = &((struct leaf *)lower)->items[0].key; else lower_key = lower->keys; memcpy(c->keys, lower_key, sizeof(struct key)); memcpy(c->keys + 1, key, sizeof(struct key)); c->blockptrs[0] = path->nodes[level-1]->blocknr; c->blockptrs[1] = blocknr; /* the path has an extra ref to root->node */ tree_block_release(root, root->node); root->node = t; t->count++; write_tree_block(root, t); path->nodes[level] = t; path->slots[level] = 0; if (c->keys[1].objectid == 0) BUG(); return 0; } lower = &path->nodes[level]->node; nritems = lower->header.nritems; if (slot > nritems) BUG(); if (nritems == NODEPTRS_PER_BLOCK) BUG(); if (slot != nritems) { memmove(lower->keys + slot + 1, lower->keys + slot, (nritems - slot) * sizeof(struct key)); memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot, (nritems - slot) * sizeof(u64)); } memcpy(lower->keys + slot, key, sizeof(struct key)); lower->blockptrs[slot] = blocknr; lower->header.nritems++; if (lower->keys[1].objectid == 0) BUG(); write_tree_block(root, path->nodes[level]); return 0; } /* * insert a key,blocknr pair into the tree at a given level * If the node at that level in the path doesn't have room, * it is split or shifted as appropriate. */ int insert_ptr(struct ctree_root *root, struct ctree_path *path, struct key *key, u64 blocknr, int level) Loading @@ -340,6 +412,15 @@ int insert_ptr(struct ctree_root *root, int mid; int bal_start = -1; /* * check to see if we need to make room in the node for this * pointer. If we do, keep walking the tree, making sure there * is enough room in each level for the required insertions. * * The bal array is filled in with any nodes to be inserted * due to splitting. Once we've done all the splitting required * do the inserts based on the data in the bal array. */ memset(bal, 0, ARRAY_SIZE(bal)); while(t && t->node.header.nritems == NODEPTRS_PER_BLOCK) { c = &t->node; Loading Loading @@ -373,6 +454,11 @@ int insert_ptr(struct ctree_root *root, bal_level += 1; t = path->nodes[bal_level]; } /* * bal_start tells us the first level in the tree that needed to * be split. Go through the bal array inserting the new nodes * as needed. The path is fixed as we go. */ while(bal_start > 0) { b_buffer = bal[bal_start]; c = &path->nodes[bal_start]->node; Loading @@ -390,10 +476,16 @@ int insert_ptr(struct ctree_root *root, if (!bal[bal_start]) break; } /* Now that the tree has room, insert the requested pointer */ return __insert_ptr(root, path, key, blocknr, path->slots[level] + 1, level); } /* * how many bytes are required to store the items in a leaf. start * and nr indicate which items in the leaf to check. This totals up the * space used both by the item structs and the item data */ int leaf_space_used(struct leaf *l, int start, int nr) { int data_len; Loading @@ -407,6 +499,10 @@ int leaf_space_used(struct leaf *l, int start, int nr) return data_len; } /* * push some data in the path leaf to the left, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise */ int push_leaf_left(struct ctree_root *root, struct ctree_path *path, int data_size) { Loading Loading @@ -498,6 +594,10 @@ int push_leaf_left(struct ctree_root *root, struct ctree_path *path, return 0; } /* * split the path's leaf in two, making sure there is at least data_size * available for the resulting leaf level of the path. */ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size) { struct tree_buffer *l_buf = path->nodes[0]; Loading Loading @@ -548,9 +648,10 @@ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size) l->data + leaf_data_end(l), data_copy_size); rt_data_off = LEAF_DATA_SIZE - (l->items[mid].offset + l->items[mid].size); for (i = 0; i < right->header.nritems; i++) { for (i = 0; i < right->header.nritems; i++) right->items[i].offset += rt_data_off; } l->header.nritems = mid; ret = insert_ptr(root, path, &right->items[0].key, right_buffer->blocknr, 1); Loading @@ -570,6 +671,10 @@ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size) return ret; } /* * Given a key and some data, insert an item into the tree. * This does all the path init required, making room in the tree if needed. */ int insert_item(struct ctree_root *root, struct key *key, void *data, int data_size) { Loading @@ -582,6 +687,7 @@ int insert_item(struct ctree_root *root, struct key *key, unsigned int data_end; struct ctree_path path; /* create a root if there isn't one */ if (!root->node) { struct tree_buffer *t; t = alloc_free_block(root); Loading @@ -602,6 +708,8 @@ int insert_item(struct ctree_root *root, struct key *key, slot_orig = path.slots[0]; leaf_buf = path.nodes[0]; leaf = &leaf_buf->leaf; /* make room if needed */ if (leaf_free_space(leaf) < sizeof(struct item) + data_size) { split_leaf(root, &path, data_size); leaf_buf = path.nodes[0]; Loading Loading @@ -638,6 +746,7 @@ int insert_item(struct ctree_root *root, struct key *key, data_end, old_data - data_end); data_end = old_data; } /* copy the new data in */ memcpy(&leaf->items[slot].key, key, sizeof(struct key)); leaf->items[slot].offset = data_end - data_size; leaf->items[slot].size = data_size; Loading @@ -650,6 +759,14 @@ int insert_item(struct ctree_root *root, struct key *key, return 0; } /* * delete the pointer from a given level in the path. The path is not * fixed up, so after calling this it is not valid at that level. * * If the delete empties a node, the node is removed from the tree, * continuing all the way the root if required. The root is converted into * a leaf if all the nodes are emptied. */ int del_ptr(struct ctree_root *root, struct ctree_path *path, int level) { int slot; Loading Loading @@ -705,6 +822,10 @@ int del_ptr(struct ctree_root *root, struct ctree_path *path, int level) return 0; } /* * delete the item at the leaf level in path. If that empties * the leaf, remove it from the tree */ int del_item(struct ctree_root *root, struct ctree_path *path) { int slot; Loading Loading @@ -732,6 +853,7 @@ int del_item(struct ctree_root *root, struct ctree_path *path) (leaf->header.nritems - slot - 1)); } leaf->header.nritems -= 1; /* delete the leaf if we've emptied it */ if (leaf->header.nritems == 0) { if (leaf_buf == root->node) { leaf->header.flags = node_level(0); Loading @@ -742,6 +864,7 @@ int del_item(struct ctree_root *root, struct ctree_path *path) if (slot == 0) fixup_low_keys(root, path, &leaf->items[0].key, 1); write_tree_block(root, leaf_buf); /* delete the leaf if it is mostly empty */ if (leaf_space_used(leaf, 0, leaf->header.nritems) < LEAF_DATA_SIZE / 4) { /* push_leaf_left fixes the path. Loading Loading @@ -837,7 +960,7 @@ int main() { int i; int num; int ret; int run_size = 1000000; int run_size = 25000; int max_key = 100000000; int tree_size = 0; struct ctree_path path; Loading Loading
fs/btrfs/ctree.c +186 −63 Original line number Diff line number Diff line Loading @@ -20,6 +20,11 @@ static void release_path(struct ctree_root *root, struct ctree_path *p) } } /* * The leaf data grows from end-to-front in the node. * this returns the address of the start of the last item, * which is the stop of the leaf data stack */ static inline unsigned int leaf_data_end(struct leaf *leaf) { unsigned int nr = leaf->header.nritems; Loading @@ -28,6 +33,11 @@ static inline unsigned int leaf_data_end(struct leaf *leaf) return leaf->items[nr-1].offset; } /* * The space between the end of the leaf items and * the start of the leaf data. IOW, how much room * the leaf has left for both items and data */ static inline int leaf_free_space(struct leaf *leaf) { int data_end = leaf_data_end(leaf); Loading @@ -36,6 +46,9 @@ static inline int leaf_free_space(struct leaf *leaf) return (char *)(leaf->data + data_end) - (char *)items_end; } /* * compare two keys in a memcmp fashion */ int comp_keys(struct key *k1, struct key *k2) { if (k1->objectid > k2->objectid) Loading @@ -52,6 +65,16 @@ int comp_keys(struct key *k1, struct key *k2) return -1; return 0; } /* * search for key in the array p. items p are item_size apart * and there are 'max' items in p * the slot in the array is returned via slot, and it points to * the place where you would insert key if it is not found in * the array. * * slot may point to max if the key is bigger than all of the keys */ int generic_bin_search(char *p, int item_size, struct key *key, int max, int *slot) { Loading Loading @@ -92,6 +115,14 @@ int bin_search(struct node *c, struct key *key, int *slot) return -1; } /* * look for key in the tree. path is filled in with nodes along the way * if key is found, we return zero and you can find the item in the leaf * level of the path (level 0) * * If the key isn't found, the path points to the slot where it should * be inserted. */ int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p) { struct tree_buffer *b = root->node; Loading Loading @@ -120,12 +151,18 @@ int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p) return -1; } /* * adjust the pointers going up the tree, starting at level * making sure the right key of each node is points to 'key'. * This is used after shifting pointers to the left, so it stops * fixing up pointers when a given leaf/node is not in slot 0 of the * higher levels */ static void fixup_low_keys(struct ctree_root *root, struct ctree_path *path, struct key *key, int level) { int i; /* adjust the pointers going up the tree */ for (i = level; i < MAX_LEVEL; i++) { struct node *t; int tslot = path->slots[i]; Loading @@ -139,64 +176,16 @@ static void fixup_low_keys(struct ctree_root *root, } } int __insert_ptr(struct ctree_root *root, struct ctree_path *path, struct key *key, u64 blocknr, int slot, int level) { struct node *c; struct node *lower; struct key *lower_key; int nritems; /* need a new root */ if (!path->nodes[level]) { struct tree_buffer *t; t = alloc_free_block(root); c = &t->node; memset(c, 0, sizeof(c)); c->header.nritems = 2; c->header.flags = node_level(level); c->header.blocknr = t->blocknr; lower = &path->nodes[level-1]->node; if (is_leaf(lower->header.flags)) lower_key = &((struct leaf *)lower)->items[0].key; else lower_key = lower->keys; memcpy(c->keys, lower_key, sizeof(struct key)); memcpy(c->keys + 1, key, sizeof(struct key)); c->blockptrs[0] = path->nodes[level-1]->blocknr; c->blockptrs[1] = blocknr; /* the path has an extra ref to root->node */ tree_block_release(root, root->node); root->node = t; t->count++; write_tree_block(root, t); path->nodes[level] = t; path->slots[level] = 0; if (c->keys[1].objectid == 0) BUG(); return 0; } lower = &path->nodes[level]->node; nritems = lower->header.nritems; if (slot > nritems) BUG(); if (nritems == NODEPTRS_PER_BLOCK) BUG(); if (slot != nritems) { memmove(lower->keys + slot + 1, lower->keys + slot, (nritems - slot) * sizeof(struct key)); memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot, (nritems - slot) * sizeof(u64)); } memcpy(lower->keys + slot, key, sizeof(struct key)); lower->blockptrs[slot] = blocknr; lower->header.nritems++; if (lower->keys[1].objectid == 0) BUG(); write_tree_block(root, path->nodes[level]); return 0; } /* * try to push data from one node into the next node left in the * tree. The src node is found at specified level in the path. * If some bytes were pushed, return 0, otherwise return 1. * * Lower nodes/leaves in the path are not touched, higher nodes may * be modified to reflect the push. * * The path is altered to reflect the push. */ int push_node_left(struct ctree_root *root, struct ctree_path *path, int level) { int slot; Loading Loading @@ -259,6 +248,16 @@ int push_node_left(struct ctree_root *root, struct ctree_path *path, int level) return 0; } /* * try to push data from one node into the next node right in the * tree. The src node is found at specified level in the path. * If some bytes were pushed, return 0, otherwise return 1. * * Lower nodes/leaves in the path are not touched, higher nodes may * be modified to reflect the push. * * The path is altered to reflect the push. */ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) { int slot; Loading @@ -270,8 +269,11 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) int dst_nritems; int src_nritems; /* can't push from the root */ if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0) return 1; /* only try to push inside the node higher up */ slot = path->slots[level + 1]; if (slot == NODEPTRS_PER_BLOCK - 1) return 1; Loading Loading @@ -315,7 +317,7 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) write_tree_block(root, t); write_tree_block(root, src_buffer); /* then fixup the leaf pointer in the path */ /* then fixup the pointers in the path */ if (path->slots[level] >= src->header.nritems) { path->slots[level] -= src->header.nritems; tree_block_release(root, path->nodes[level]); Loading @@ -327,6 +329,76 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level) return 0; } /* * worker function to insert a single pointer in a node. * the node should have enough room for the pointer already * slot and level indicate where you want the key to go, and * blocknr is the block the key points to. */ int __insert_ptr(struct ctree_root *root, struct ctree_path *path, struct key *key, u64 blocknr, int slot, int level) { struct node *c; struct node *lower; struct key *lower_key; int nritems; /* need a new root */ if (!path->nodes[level]) { struct tree_buffer *t; t = alloc_free_block(root); c = &t->node; memset(c, 0, sizeof(c)); c->header.nritems = 2; c->header.flags = node_level(level); c->header.blocknr = t->blocknr; lower = &path->nodes[level-1]->node; if (is_leaf(lower->header.flags)) lower_key = &((struct leaf *)lower)->items[0].key; else lower_key = lower->keys; memcpy(c->keys, lower_key, sizeof(struct key)); memcpy(c->keys + 1, key, sizeof(struct key)); c->blockptrs[0] = path->nodes[level-1]->blocknr; c->blockptrs[1] = blocknr; /* the path has an extra ref to root->node */ tree_block_release(root, root->node); root->node = t; t->count++; write_tree_block(root, t); path->nodes[level] = t; path->slots[level] = 0; if (c->keys[1].objectid == 0) BUG(); return 0; } lower = &path->nodes[level]->node; nritems = lower->header.nritems; if (slot > nritems) BUG(); if (nritems == NODEPTRS_PER_BLOCK) BUG(); if (slot != nritems) { memmove(lower->keys + slot + 1, lower->keys + slot, (nritems - slot) * sizeof(struct key)); memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot, (nritems - slot) * sizeof(u64)); } memcpy(lower->keys + slot, key, sizeof(struct key)); lower->blockptrs[slot] = blocknr; lower->header.nritems++; if (lower->keys[1].objectid == 0) BUG(); write_tree_block(root, path->nodes[level]); return 0; } /* * insert a key,blocknr pair into the tree at a given level * If the node at that level in the path doesn't have room, * it is split or shifted as appropriate. */ int insert_ptr(struct ctree_root *root, struct ctree_path *path, struct key *key, u64 blocknr, int level) Loading @@ -340,6 +412,15 @@ int insert_ptr(struct ctree_root *root, int mid; int bal_start = -1; /* * check to see if we need to make room in the node for this * pointer. If we do, keep walking the tree, making sure there * is enough room in each level for the required insertions. * * The bal array is filled in with any nodes to be inserted * due to splitting. Once we've done all the splitting required * do the inserts based on the data in the bal array. */ memset(bal, 0, ARRAY_SIZE(bal)); while(t && t->node.header.nritems == NODEPTRS_PER_BLOCK) { c = &t->node; Loading Loading @@ -373,6 +454,11 @@ int insert_ptr(struct ctree_root *root, bal_level += 1; t = path->nodes[bal_level]; } /* * bal_start tells us the first level in the tree that needed to * be split. Go through the bal array inserting the new nodes * as needed. The path is fixed as we go. */ while(bal_start > 0) { b_buffer = bal[bal_start]; c = &path->nodes[bal_start]->node; Loading @@ -390,10 +476,16 @@ int insert_ptr(struct ctree_root *root, if (!bal[bal_start]) break; } /* Now that the tree has room, insert the requested pointer */ return __insert_ptr(root, path, key, blocknr, path->slots[level] + 1, level); } /* * how many bytes are required to store the items in a leaf. start * and nr indicate which items in the leaf to check. This totals up the * space used both by the item structs and the item data */ int leaf_space_used(struct leaf *l, int start, int nr) { int data_len; Loading @@ -407,6 +499,10 @@ int leaf_space_used(struct leaf *l, int start, int nr) return data_len; } /* * push some data in the path leaf to the left, trying to free up at * least data_size bytes. returns zero if the push worked, nonzero otherwise */ int push_leaf_left(struct ctree_root *root, struct ctree_path *path, int data_size) { Loading Loading @@ -498,6 +594,10 @@ int push_leaf_left(struct ctree_root *root, struct ctree_path *path, return 0; } /* * split the path's leaf in two, making sure there is at least data_size * available for the resulting leaf level of the path. */ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size) { struct tree_buffer *l_buf = path->nodes[0]; Loading Loading @@ -548,9 +648,10 @@ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size) l->data + leaf_data_end(l), data_copy_size); rt_data_off = LEAF_DATA_SIZE - (l->items[mid].offset + l->items[mid].size); for (i = 0; i < right->header.nritems; i++) { for (i = 0; i < right->header.nritems; i++) right->items[i].offset += rt_data_off; } l->header.nritems = mid; ret = insert_ptr(root, path, &right->items[0].key, right_buffer->blocknr, 1); Loading @@ -570,6 +671,10 @@ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size) return ret; } /* * Given a key and some data, insert an item into the tree. * This does all the path init required, making room in the tree if needed. */ int insert_item(struct ctree_root *root, struct key *key, void *data, int data_size) { Loading @@ -582,6 +687,7 @@ int insert_item(struct ctree_root *root, struct key *key, unsigned int data_end; struct ctree_path path; /* create a root if there isn't one */ if (!root->node) { struct tree_buffer *t; t = alloc_free_block(root); Loading @@ -602,6 +708,8 @@ int insert_item(struct ctree_root *root, struct key *key, slot_orig = path.slots[0]; leaf_buf = path.nodes[0]; leaf = &leaf_buf->leaf; /* make room if needed */ if (leaf_free_space(leaf) < sizeof(struct item) + data_size) { split_leaf(root, &path, data_size); leaf_buf = path.nodes[0]; Loading Loading @@ -638,6 +746,7 @@ int insert_item(struct ctree_root *root, struct key *key, data_end, old_data - data_end); data_end = old_data; } /* copy the new data in */ memcpy(&leaf->items[slot].key, key, sizeof(struct key)); leaf->items[slot].offset = data_end - data_size; leaf->items[slot].size = data_size; Loading @@ -650,6 +759,14 @@ int insert_item(struct ctree_root *root, struct key *key, return 0; } /* * delete the pointer from a given level in the path. The path is not * fixed up, so after calling this it is not valid at that level. * * If the delete empties a node, the node is removed from the tree, * continuing all the way the root if required. The root is converted into * a leaf if all the nodes are emptied. */ int del_ptr(struct ctree_root *root, struct ctree_path *path, int level) { int slot; Loading Loading @@ -705,6 +822,10 @@ int del_ptr(struct ctree_root *root, struct ctree_path *path, int level) return 0; } /* * delete the item at the leaf level in path. If that empties * the leaf, remove it from the tree */ int del_item(struct ctree_root *root, struct ctree_path *path) { int slot; Loading Loading @@ -732,6 +853,7 @@ int del_item(struct ctree_root *root, struct ctree_path *path) (leaf->header.nritems - slot - 1)); } leaf->header.nritems -= 1; /* delete the leaf if we've emptied it */ if (leaf->header.nritems == 0) { if (leaf_buf == root->node) { leaf->header.flags = node_level(0); Loading @@ -742,6 +864,7 @@ int del_item(struct ctree_root *root, struct ctree_path *path) if (slot == 0) fixup_low_keys(root, path, &leaf->items[0].key, 1); write_tree_block(root, leaf_buf); /* delete the leaf if it is mostly empty */ if (leaf_space_used(leaf, 0, leaf->header.nritems) < LEAF_DATA_SIZE / 4) { /* push_leaf_left fixes the path. Loading Loading @@ -837,7 +960,7 @@ int main() { int i; int num; int ret; int run_size = 1000000; int run_size = 25000; int max_key = 100000000; int tree_size = 0; struct ctree_path path; Loading