Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 74123bd7 authored by Chris Mason's avatar Chris Mason Committed by David Woodhouse
Browse files

Btrfs: Commenting/cleanup

parent eb60ceac
Loading
Loading
Loading
Loading
+186 −63
Original line number Diff line number Diff line
@@ -20,6 +20,11 @@ static void release_path(struct ctree_root *root, struct ctree_path *p)
	}
}

/*
 * The leaf data grows from end-to-front in the node.
 * this returns the address of the start of the last item,
 * which is the stop of the leaf data stack
 */
static inline unsigned int leaf_data_end(struct leaf *leaf)
{
	unsigned int nr = leaf->header.nritems;
@@ -28,6 +33,11 @@ static inline unsigned int leaf_data_end(struct leaf *leaf)
	return leaf->items[nr-1].offset;
}

/*
 * The space between the end of the leaf items and
 * the start of the leaf data.  IOW, how much room
 * the leaf has left for both items and data
 */
static inline int leaf_free_space(struct leaf *leaf)
{
	int data_end = leaf_data_end(leaf);
@@ -36,6 +46,9 @@ static inline int leaf_free_space(struct leaf *leaf)
	return (char *)(leaf->data + data_end) - (char *)items_end;
}

/*
 * compare two keys in a memcmp fashion
 */
int comp_keys(struct key *k1, struct key *k2)
{
	if (k1->objectid > k2->objectid)
@@ -52,6 +65,16 @@ int comp_keys(struct key *k1, struct key *k2)
		return -1;
	return 0;
}

/*
 * search for key in the array p.  items p are item_size apart
 * and there are 'max' items in p
 * the slot in the array is returned via slot, and it points to
 * the place where you would insert key if it is not found in
 * the array.
 *
 * slot may point to max if the key is bigger than all of the keys
 */
int generic_bin_search(char *p, int item_size, struct key *key,
		       int max, int *slot)
{
@@ -92,6 +115,14 @@ int bin_search(struct node *c, struct key *key, int *slot)
	return -1;
}

/*
 * look for key in the tree.  path is filled in with nodes along the way
 * if key is found, we return zero and you can find the item in the leaf
 * level of the path (level 0)
 *
 * If the key isn't found, the path points to the slot where it should
 * be inserted.
 */
int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p)
{
	struct tree_buffer *b = root->node;
@@ -120,12 +151,18 @@ int search_slot(struct ctree_root *root, struct key *key, struct ctree_path *p)
	return -1;
}

/*
 * adjust the pointers going up the tree, starting at level
 * making sure the right key of each node is points to 'key'.
 * This is used after shifting pointers to the left, so it stops
 * fixing up pointers when a given leaf/node is not in slot 0 of the
 * higher levels
 */
static void fixup_low_keys(struct ctree_root *root,
			   struct ctree_path *path, struct key *key,
			   int level)
{
	int i;
	/* adjust the pointers going up the tree */
	for (i = level; i < MAX_LEVEL; i++) {
		struct node *t;
		int tslot = path->slots[i];
@@ -139,64 +176,16 @@ static void fixup_low_keys(struct ctree_root *root,
	}
}

int __insert_ptr(struct ctree_root *root,
		struct ctree_path *path, struct key *key,
		u64 blocknr, int slot, int level)
{
	struct node *c;
	struct node *lower;
	struct key *lower_key;
	int nritems;
	/* need a new root */
	if (!path->nodes[level]) {
		struct tree_buffer *t;
		t = alloc_free_block(root);
		c = &t->node;
		memset(c, 0, sizeof(c));
		c->header.nritems = 2;
		c->header.flags = node_level(level);
		c->header.blocknr = t->blocknr;
		lower = &path->nodes[level-1]->node;
		if (is_leaf(lower->header.flags))
			lower_key = &((struct leaf *)lower)->items[0].key;
		else
			lower_key = lower->keys;
		memcpy(c->keys, lower_key, sizeof(struct key));
		memcpy(c->keys + 1, key, sizeof(struct key));
		c->blockptrs[0] = path->nodes[level-1]->blocknr;
		c->blockptrs[1] = blocknr;
		/* the path has an extra ref to root->node */
		tree_block_release(root, root->node);
		root->node = t;
		t->count++;
		write_tree_block(root, t);
		path->nodes[level] = t;
		path->slots[level] = 0;
		if (c->keys[1].objectid == 0)
			BUG();
		return 0;
	}
	lower = &path->nodes[level]->node;
	nritems = lower->header.nritems;
	if (slot > nritems)
		BUG();
	if (nritems == NODEPTRS_PER_BLOCK)
		BUG();
	if (slot != nritems) {
		memmove(lower->keys + slot + 1, lower->keys + slot,
			(nritems - slot) * sizeof(struct key));
		memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
			(nritems - slot) * sizeof(u64));
	}
	memcpy(lower->keys + slot, key, sizeof(struct key));
	lower->blockptrs[slot] = blocknr;
	lower->header.nritems++;
	if (lower->keys[1].objectid == 0)
			BUG();
	write_tree_block(root, path->nodes[level]);
	return 0;
}

/*
 * try to push data from one node into the next node left in the
 * tree.  The src node is found at specified level in the path.
 * If some bytes were pushed, return 0, otherwise return 1.
 *
 * Lower nodes/leaves in the path are not touched, higher nodes may
 * be modified to reflect the push.
 *
 * The path is altered to reflect the push.
 */
int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
{
	int slot;
@@ -259,6 +248,16 @@ int push_node_left(struct ctree_root *root, struct ctree_path *path, int level)
	return 0;
}

/*
 * try to push data from one node into the next node right in the
 * tree.  The src node is found at specified level in the path.
 * If some bytes were pushed, return 0, otherwise return 1.
 *
 * Lower nodes/leaves in the path are not touched, higher nodes may
 * be modified to reflect the push.
 *
 * The path is altered to reflect the push.
 */
int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
{
	int slot;
@@ -270,8 +269,11 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
	int dst_nritems;
	int src_nritems;

	/* can't push from the root */
	if (level == MAX_LEVEL - 1 || path->nodes[level + 1] == 0)
		return 1;

	/* only try to push inside the node higher up */
	slot = path->slots[level + 1];
	if (slot == NODEPTRS_PER_BLOCK - 1)
		return 1;
@@ -315,7 +317,7 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
	write_tree_block(root, t);
	write_tree_block(root, src_buffer);

	/* then fixup the leaf pointer in the path */
	/* then fixup the pointers in the path */
	if (path->slots[level] >= src->header.nritems) {
		path->slots[level] -= src->header.nritems;
		tree_block_release(root, path->nodes[level]);
@@ -327,6 +329,76 @@ int push_node_right(struct ctree_root *root, struct ctree_path *path, int level)
	return 0;
}

/*
 * worker function to insert a single pointer in a node.
 * the node should have enough room for the pointer already
 * slot and level indicate where you want the key to go, and
 * blocknr is the block the key points to.
 */
int __insert_ptr(struct ctree_root *root,
		struct ctree_path *path, struct key *key,
		u64 blocknr, int slot, int level)
{
	struct node *c;
	struct node *lower;
	struct key *lower_key;
	int nritems;
	/* need a new root */
	if (!path->nodes[level]) {
		struct tree_buffer *t;
		t = alloc_free_block(root);
		c = &t->node;
		memset(c, 0, sizeof(c));
		c->header.nritems = 2;
		c->header.flags = node_level(level);
		c->header.blocknr = t->blocknr;
		lower = &path->nodes[level-1]->node;
		if (is_leaf(lower->header.flags))
			lower_key = &((struct leaf *)lower)->items[0].key;
		else
			lower_key = lower->keys;
		memcpy(c->keys, lower_key, sizeof(struct key));
		memcpy(c->keys + 1, key, sizeof(struct key));
		c->blockptrs[0] = path->nodes[level-1]->blocknr;
		c->blockptrs[1] = blocknr;
		/* the path has an extra ref to root->node */
		tree_block_release(root, root->node);
		root->node = t;
		t->count++;
		write_tree_block(root, t);
		path->nodes[level] = t;
		path->slots[level] = 0;
		if (c->keys[1].objectid == 0)
			BUG();
		return 0;
	}
	lower = &path->nodes[level]->node;
	nritems = lower->header.nritems;
	if (slot > nritems)
		BUG();
	if (nritems == NODEPTRS_PER_BLOCK)
		BUG();
	if (slot != nritems) {
		memmove(lower->keys + slot + 1, lower->keys + slot,
			(nritems - slot) * sizeof(struct key));
		memmove(lower->blockptrs + slot + 1, lower->blockptrs + slot,
			(nritems - slot) * sizeof(u64));
	}
	memcpy(lower->keys + slot, key, sizeof(struct key));
	lower->blockptrs[slot] = blocknr;
	lower->header.nritems++;
	if (lower->keys[1].objectid == 0)
			BUG();
	write_tree_block(root, path->nodes[level]);
	return 0;
}


/*
 * insert a key,blocknr pair into the tree at a given level
 * If the node at that level in the path doesn't have room,
 * it is split or shifted as appropriate.
 */
int insert_ptr(struct ctree_root *root,
		struct ctree_path *path, struct key *key,
		u64 blocknr, int level)
@@ -340,6 +412,15 @@ int insert_ptr(struct ctree_root *root,
	int mid;
	int bal_start = -1;

	/*
	 * check to see if we need to make room in the node for this
	 * pointer.  If we do, keep walking the tree, making sure there
	 * is enough room in each level for the required insertions.
	 *
	 * The bal array is filled in with any nodes to be inserted
	 * due to splitting.  Once we've done all the splitting required
	 * do the inserts based on the data in the bal array.
	 */
	memset(bal, 0, ARRAY_SIZE(bal));
	while(t && t->node.header.nritems == NODEPTRS_PER_BLOCK) {
		c = &t->node;
@@ -373,6 +454,11 @@ int insert_ptr(struct ctree_root *root,
		bal_level += 1;
		t = path->nodes[bal_level];
	}
	/*
	 * bal_start tells us the first level in the tree that needed to
	 * be split.  Go through the bal array inserting the new nodes
	 * as needed.  The path is fixed as we go.
	 */
	while(bal_start > 0) {
		b_buffer = bal[bal_start];
		c = &path->nodes[bal_start]->node;
@@ -390,10 +476,16 @@ int insert_ptr(struct ctree_root *root,
		if (!bal[bal_start])
			break;
	}
	/* Now that the tree has room, insert the requested pointer */
	return __insert_ptr(root, path, key, blocknr, path->slots[level] + 1,
			    level);
}

/*
 * how many bytes are required to store the items in a leaf.  start
 * and nr indicate which items in the leaf to check.  This totals up the
 * space used both by the item structs and the item data
 */
int leaf_space_used(struct leaf *l, int start, int nr)
{
	int data_len;
@@ -407,6 +499,10 @@ int leaf_space_used(struct leaf *l, int start, int nr)
	return data_len;
}

/*
 * push some data in the path leaf to the left, trying to free up at
 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
 */
int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
		   int data_size)
{
@@ -498,6 +594,10 @@ int push_leaf_left(struct ctree_root *root, struct ctree_path *path,
	return 0;
}

/*
 * split the path's leaf in two, making sure there is at least data_size
 * available for the resulting leaf level of the path.
 */
int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
{
	struct tree_buffer *l_buf = path->nodes[0];
@@ -548,9 +648,10 @@ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
	       l->data + leaf_data_end(l), data_copy_size);
	rt_data_off = LEAF_DATA_SIZE -
		     (l->items[mid].offset + l->items[mid].size);
	for (i = 0; i < right->header.nritems; i++) {

	for (i = 0; i < right->header.nritems; i++)
		right->items[i].offset += rt_data_off;
	}

	l->header.nritems = mid;
	ret = insert_ptr(root, path, &right->items[0].key,
			  right_buffer->blocknr, 1);
@@ -570,6 +671,10 @@ int split_leaf(struct ctree_root *root, struct ctree_path *path, int data_size)
	return ret;
}

/*
 * Given a key and some data, insert an item into the tree.
 * This does all the path init required, making room in the tree if needed.
 */
int insert_item(struct ctree_root *root, struct key *key,
			  void *data, int data_size)
{
@@ -582,6 +687,7 @@ int insert_item(struct ctree_root *root, struct key *key,
	unsigned int data_end;
	struct ctree_path path;

	/* create a root if there isn't one */
	if (!root->node) {
		struct tree_buffer *t;
		t = alloc_free_block(root);
@@ -602,6 +708,8 @@ int insert_item(struct ctree_root *root, struct key *key,
	slot_orig = path.slots[0];
	leaf_buf = path.nodes[0];
	leaf = &leaf_buf->leaf;

	/* make room if needed */
	if (leaf_free_space(leaf) <  sizeof(struct item) + data_size) {
		split_leaf(root, &path, data_size);
		leaf_buf = path.nodes[0];
@@ -638,6 +746,7 @@ int insert_item(struct ctree_root *root, struct key *key,
		        data_end, old_data - data_end);
		data_end = old_data;
	}
	/* copy the new data in */
	memcpy(&leaf->items[slot].key, key, sizeof(struct key));
	leaf->items[slot].offset = data_end - data_size;
	leaf->items[slot].size = data_size;
@@ -650,6 +759,14 @@ int insert_item(struct ctree_root *root, struct key *key,
	return 0;
}

/*
 * delete the pointer from a given level in the path.  The path is not
 * fixed up, so after calling this it is not valid at that level.
 *
 * If the delete empties a node, the node is removed from the tree,
 * continuing all the way the root if required.  The root is converted into
 * a leaf if all the nodes are emptied.
 */
int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
{
	int slot;
@@ -705,6 +822,10 @@ int del_ptr(struct ctree_root *root, struct ctree_path *path, int level)
	return 0;
}

/*
 * delete the item at the leaf level in path.  If that empties
 * the leaf, remove it from the tree
 */
int del_item(struct ctree_root *root, struct ctree_path *path)
{
	int slot;
@@ -732,6 +853,7 @@ int del_item(struct ctree_root *root, struct ctree_path *path)
			(leaf->header.nritems - slot - 1));
	}
	leaf->header.nritems -= 1;
	/* delete the leaf if we've emptied it */
	if (leaf->header.nritems == 0) {
		if (leaf_buf == root->node) {
			leaf->header.flags = node_level(0);
@@ -742,6 +864,7 @@ int del_item(struct ctree_root *root, struct ctree_path *path)
		if (slot == 0)
			fixup_low_keys(root, path, &leaf->items[0].key, 1);
		write_tree_block(root, leaf_buf);
		/* delete the leaf if it is mostly empty */
		if (leaf_space_used(leaf, 0, leaf->header.nritems) <
		    LEAF_DATA_SIZE / 4) {
			/* push_leaf_left fixes the path.
@@ -837,7 +960,7 @@ int main() {
	int i;
	int num;
	int ret;
	int run_size = 1000000;
	int run_size = 25000;
	int max_key = 100000000;
	int tree_size = 0;
	struct ctree_path path;