Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 14a62c34 authored by Thomas Gleixner's avatar Thomas Gleixner Committed by Ingo Molnar
Browse files

x86: unify ioremap



Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
Signed-off-by: default avatarThomas Gleixner <tglx@linutronix.de>
parent a3828064
Loading
Loading
Loading
Loading
+175 −126
Original line number Original line Diff line number Diff line
@@ -67,22 +67,26 @@ void show_mem(void)
{
{
	long i, total = 0, reserved = 0;
	long i, total = 0, reserved = 0;
	long shared = 0, cached = 0;
	long shared = 0, cached = 0;
	pg_data_t *pgdat;
	struct page *page;
	struct page *page;
	pg_data_t *pgdat;


	printk(KERN_INFO "Mem-info:\n");
	printk(KERN_INFO "Mem-info:\n");
	show_free_areas();
	show_free_areas();
	printk(KERN_INFO "Free swap:       %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
	printk(KERN_INFO "Free swap:       %6ldkB\n",
		nr_swap_pages << (PAGE_SHIFT-10));


	for_each_online_pgdat(pgdat) {
	for_each_online_pgdat(pgdat) {
		for (i = 0; i < pgdat->node_spanned_pages; ++i) {
		for (i = 0; i < pgdat->node_spanned_pages; ++i) {
			/* this loop can take a while with 256 GB and 4k pages
			/*
			   so update the NMI watchdog */
			 * This loop can take a while with 256 GB and
			if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) {
			 * 4k pages so defer the NMI watchdog:
			 */
			if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
				touch_nmi_watchdog();
				touch_nmi_watchdog();
			}

			if (!pfn_valid(pgdat->node_start_pfn + i))
			if (!pfn_valid(pgdat->node_start_pfn + i))
				continue;
				continue;

			page = pfn_to_page(pgdat->node_start_pfn + i);
			page = pfn_to_page(pgdat->node_start_pfn + i);
			total++;
			total++;
			if (PageReserved(page))
			if (PageReserved(page))
@@ -104,19 +108,24 @@ int after_bootmem;
static __init void *spp_getpage(void)
static __init void *spp_getpage(void)
{
{
	void *ptr;
	void *ptr;

	if (after_bootmem)
	if (after_bootmem)
		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
		ptr = (void *) get_zeroed_page(GFP_ATOMIC);
	else
	else
		ptr = alloc_bootmem_pages(PAGE_SIZE);
		ptr = alloc_bootmem_pages(PAGE_SIZE);
	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK))

		panic("set_pte_phys: cannot allocate page data %s\n", after_bootmem?"after bootmem":"");
	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
		panic("set_pte_phys: cannot allocate page data %s\n",
			after_bootmem ? "after bootmem" : "");
	}


	Dprintk("spp_getpage %p\n", ptr);
	Dprintk("spp_getpage %p\n", ptr);

	return ptr;
	return ptr;
}
}


static __init void set_pte_phys(unsigned long vaddr,
static __init void
			 unsigned long phys, pgprot_t prot)
set_pte_phys(unsigned long vaddr, unsigned long phys, pgprot_t prot)
{
{
	pgd_t *pgd;
	pgd_t *pgd;
	pud_t *pud;
	pud_t *pud;
@@ -135,7 +144,8 @@ static __init void set_pte_phys(unsigned long vaddr,
		pmd = (pmd_t *) spp_getpage();
		pmd = (pmd_t *) spp_getpage();
		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE | _PAGE_USER));
		if (pmd != pmd_offset(pud, 0)) {
		if (pmd != pmd_offset(pud, 0)) {
			printk("PAGETABLE BUG #01! %p <-> %p\n", pmd, pmd_offset(pud,0));
			printk("PAGETABLE BUG #01! %p <-> %p\n",
				pmd, pmd_offset(pud, 0));
			return;
			return;
		}
		}
	}
	}
@@ -187,6 +197,7 @@ static __meminit void *alloc_low_page(unsigned long *phys)
	if (after_bootmem) {
	if (after_bootmem) {
		adr = (void *)get_zeroed_page(GFP_ATOMIC);
		adr = (void *)get_zeroed_page(GFP_ATOMIC);
		*phys = __pa(adr);
		*phys = __pa(adr);

		return adr;
		return adr;
	}
	}


@@ -201,7 +212,6 @@ static __meminit void *alloc_low_page(unsigned long *phys)


static __meminit void unmap_low_page(void *adr)
static __meminit void unmap_low_page(void *adr)
{
{

	if (after_bootmem)
	if (after_bootmem)
		return;
		return;


@@ -211,33 +221,39 @@ static __meminit void unmap_low_page(void *adr)
/* Must run before zap_low_mappings */
/* Must run before zap_low_mappings */
__meminit void *early_ioremap(unsigned long addr, unsigned long size)
__meminit void *early_ioremap(unsigned long addr, unsigned long size)
{
{
	unsigned long vaddr;
	pmd_t *pmd, *last_pmd;
	pmd_t *pmd, *last_pmd;
	unsigned long vaddr;
	int i, pmds;
	int i, pmds;


	pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
	pmds = ((addr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
	vaddr = __START_KERNEL_map;
	vaddr = __START_KERNEL_map;
	pmd = level2_kernel_pgt;
	pmd = level2_kernel_pgt;
	last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;
	last_pmd = level2_kernel_pgt + PTRS_PER_PMD - 1;

	for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
	for (; pmd <= last_pmd; pmd++, vaddr += PMD_SIZE) {
		for (i = 0; i < pmds; i++) {
		for (i = 0; i < pmds; i++) {
			if (pmd_present(pmd[i]))
			if (pmd_present(pmd[i]))
				goto next;
				goto continue_outer_loop;
		}
		}
		vaddr += addr & ~PMD_MASK;
		vaddr += addr & ~PMD_MASK;
		addr &= PMD_MASK;
		addr &= PMD_MASK;

		for (i = 0; i < pmds; i++, addr += PMD_SIZE)
		for (i = 0; i < pmds; i++, addr += PMD_SIZE)
			set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
			set_pmd(pmd+i, __pmd(addr | __PAGE_KERNEL_LARGE_EXEC));
		__flush_tlb_all();
		__flush_tlb_all();

		return (void *)vaddr;
		return (void *)vaddr;
	next:
continue_outer_loop:
		;
		;
	}
	}
	printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);
	printk("early_ioremap(0x%lx, %lu) failed\n", addr, size);

	return NULL;
	return NULL;
}
}


/* To avoid virtual aliases later */
/*
 * To avoid virtual aliases later:
 */
__meminit void early_iounmap(void *addr, unsigned long size)
__meminit void early_iounmap(void *addr, unsigned long size)
{
{
	unsigned long vaddr;
	unsigned long vaddr;
@@ -247,8 +263,10 @@ __meminit void early_iounmap(void *addr, unsigned long size)
	vaddr = (unsigned long)addr;
	vaddr = (unsigned long)addr;
	pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
	pmds = ((vaddr & ~PMD_MASK) + size + ~PMD_MASK) / PMD_SIZE;
	pmd = level2_kernel_pgt + pmd_index(vaddr);
	pmd = level2_kernel_pgt + pmd_index(vaddr);

	for (i = 0; i < pmds; i++)
	for (i = 0; i < pmds; i++)
		pmd_clear(pmd + i);
		pmd_clear(pmd + i);

	__flush_tlb_all();
	__flush_tlb_all();
}
}


@@ -262,9 +280,10 @@ phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end)
		pmd_t *pmd = pmd_page + pmd_index(address);
		pmd_t *pmd = pmd_page + pmd_index(address);


		if (address >= end) {
		if (address >= end) {
			if (!after_bootmem)
			if (!after_bootmem) {
				for (; i < PTRS_PER_PMD; i++, pmd++)
				for (; i < PTRS_PER_PMD; i++, pmd++)
					set_pmd(pmd, __pmd(0));
					set_pmd(pmd, __pmd(0));
			}
			break;
			break;
		}
		}


@@ -287,11 +306,11 @@ phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end)
	__flush_tlb_all();
	__flush_tlb_all();
}
}


static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
static void __meminit
phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end)
{
{
	int i = pud_index(addr);
	int i = pud_index(addr);



	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
		unsigned long pmd_phys;
		unsigned long pmd_phys;
		pud_t *pud = pud_page + pud_index(addr);
		pud_t *pud = pud_page + pud_index(addr);
@@ -300,7 +319,8 @@ static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigne
		if (addr >= end)
		if (addr >= end)
			break;
			break;


		if (!after_bootmem && !e820_any_mapped(addr,addr+PUD_SIZE,0)) {
		if (!after_bootmem &&
				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
			set_pud(pud, __pud(0));
			set_pud(pud, __pud(0));
			continue;
			continue;
		}
		}
@@ -311,10 +331,12 @@ static void __meminit phys_pud_init(pud_t *pud_page, unsigned long addr, unsigne
		}
		}


		pmd = alloc_low_page(&pmd_phys);
		pmd = alloc_low_page(&pmd_phys);

		spin_lock(&init_mm.page_table_lock);
		spin_lock(&init_mm.page_table_lock);
		set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
		set_pud(pud, __pud(pmd_phys | _KERNPG_TABLE));
		phys_pmd_init(pmd, addr, end);
		phys_pmd_init(pmd, addr, end);
		spin_unlock(&init_mm.page_table_lock);
		spin_unlock(&init_mm.page_table_lock);

		unmap_low_page(pmd);
		unmap_low_page(pmd);
	}
	}
	__flush_tlb_all();
	__flush_tlb_all();
@@ -329,9 +351,11 @@ static void __init find_early_table_space(unsigned long end)
	tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
	tables = round_up(puds * sizeof(pud_t), PAGE_SIZE) +
		 round_up(pmds * sizeof(pmd_t), PAGE_SIZE);
		 round_up(pmds * sizeof(pmd_t), PAGE_SIZE);


 	/* RED-PEN putting page tables only on node 0 could
	/*
 	   cause a hotspot and fill up ZONE_DMA. The page tables
	 * RED-PEN putting page tables only on node 0 could
 	   need roughly 0.5KB per GB. */
	 * cause a hotspot and fill up ZONE_DMA. The page tables
	 * need roughly 0.5KB per GB.
	 */
	start = 0x8000;
	start = 0x8000;
	table_start = find_e820_area(start, end, tables);
	table_start = find_e820_area(start, end, tables);
	if (table_start == -1UL)
	if (table_start == -1UL)
@@ -345,9 +369,11 @@ static void __init find_early_table_space(unsigned long end)
		(table_start << PAGE_SHIFT) + tables);
		(table_start << PAGE_SHIFT) + tables);
}
}


/* Setup the direct mapping of the physical memory at PAGE_OFFSET.
/*
   This runs before bootmem is initialized and gets pages directly from the 
 * Setup the direct mapping of the physical memory at PAGE_OFFSET.
   physical memory. To access them they are temporarily mapped. */
 * This runs before bootmem is initialized and gets pages directly from
 * the physical memory. To access them they are temporarily mapped.
 */
void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
{
{
	unsigned long next;
	unsigned long next;
@@ -356,9 +382,10 @@ void __init_refok init_memory_mapping(unsigned long start, unsigned long end)


	/*
	/*
	 * Find space for the kernel direct mapping tables.
	 * Find space for the kernel direct mapping tables.
	 * Later we should allocate these tables in the local node of the memory
	 *
	 * mapped.  Unfortunately this is done currently before the nodes are 
	 * Later we should allocate these tables in the local node of the
	 * discovered.
	 * memory mapped. Unfortunately this is done currently before the
	 * nodes are discovered.
	 */
	 */
	if (!after_bootmem)
	if (!after_bootmem)
		find_early_table_space(end);
		find_early_table_space(end);
@@ -367,8 +394,8 @@ void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
	end = (unsigned long)__va(end);
	end = (unsigned long)__va(end);


	for (; start < end; start = next) {
	for (; start < end; start = next) {
		unsigned long pud_phys; 
		pgd_t *pgd = pgd_offset_k(start);
		pgd_t *pgd = pgd_offset_k(start);
		unsigned long pud_phys;
		pud_t *pud;
		pud_t *pud;


		if (after_bootmem)
		if (after_bootmem)
@@ -396,6 +423,7 @@ void __init_refok init_memory_mapping(unsigned long start, unsigned long end)
void __init paging_init(void)
void __init paging_init(void)
{
{
	unsigned long max_zone_pfns[MAX_NR_ZONES];
	unsigned long max_zone_pfns[MAX_NR_ZONES];

	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
@@ -407,10 +435,12 @@ void __init paging_init(void)
}
}
#endif
#endif


/* Unmap a kernel mapping if it exists. This is useful to avoid prefetches
/*
   from the CPU leading to inconsistent cache lines. address and size
 * Unmap a kernel mapping if it exists. This is useful to avoid
   must be aligned to 2MB boundaries. 
 * prefetches from the CPU leading to inconsistent cache lines.
   Does nothing when the mapping doesn't exist. */
 * address and size must be aligned to 2MB boundaries.
 * Does nothing when the mapping doesn't exist.
 */
void __init clear_kernel_mapping(unsigned long address, unsigned long size)
void __init clear_kernel_mapping(unsigned long address, unsigned long size)
{
{
	unsigned long end = address + size;
	unsigned long end = address + size;
@@ -422,18 +452,25 @@ void __init clear_kernel_mapping(unsigned long address, unsigned long size)
		pgd_t *pgd = pgd_offset_k(address);
		pgd_t *pgd = pgd_offset_k(address);
		pud_t *pud;
		pud_t *pud;
		pmd_t *pmd;
		pmd_t *pmd;

		if (pgd_none(*pgd))
		if (pgd_none(*pgd))
			continue;
			continue;

		pud = pud_offset(pgd, address);
		pud = pud_offset(pgd, address);
		if (pud_none(*pud))
		if (pud_none(*pud))
			continue;
			continue;

		pmd = pmd_offset(pud, address);
		pmd = pmd_offset(pud, address);
		if (!pmd || pmd_none(*pmd))
		if (!pmd || pmd_none(*pmd))
			continue;
			continue;
		if (0 == (pmd_val(*pmd) & _PAGE_PSE)) { 

			/* Could handle this, but it should not happen currently. */
		if (!(pmd_val(*pmd) & _PAGE_PSE)) {
			printk(KERN_ERR 
			/*
	       "clear_kernel_mapping: mapping has been split. will leak memory\n"); 
			 * Could handle this, but it should not happen
			 * currently:
			 */
			printk(KERN_ERR "clear_kernel_mapping: "
				"mapping has been split. will leak memory\n");
			pmd_ERROR(*pmd);
			pmd_ERROR(*pmd);
		}
		}
		set_pmd(pmd, __pmd(0));
		set_pmd(pmd, __pmd(0));
@@ -466,15 +503,12 @@ int arch_add_memory(int nid, u64 start, u64 size)
	unsigned long nr_pages = size >> PAGE_SHIFT;
	unsigned long nr_pages = size >> PAGE_SHIFT;
	int ret;
	int ret;


	init_memory_mapping(start, (start + size -1));
	init_memory_mapping(start, start + size-1);


	ret = __add_pages(zone, start_pfn, nr_pages);
	ret = __add_pages(zone, start_pfn, nr_pages);
	if (ret)
	if (ret)
		goto error;

	return ret;
error:
		printk("%s: Problem encountered in __add_pages!\n", __func__);
		printk("%s: Problem encountered in __add_pages!\n", __func__);

	return ret;
	return ret;
}
}
EXPORT_SYMBOL_GPL(arch_add_memory);
EXPORT_SYMBOL_GPL(arch_add_memory);
@@ -489,8 +523,8 @@ EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);


#endif /* CONFIG_MEMORY_HOTPLUG */
#endif /* CONFIG_MEMORY_HOTPLUG */


static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel, kcore_modules,
static struct kcore_list kcore_mem, kcore_vmalloc, kcore_kernel,
			 kcore_vsyscall;
			 kcore_modules, kcore_vsyscall;


void __init mem_init(void)
void __init mem_init(void)
{
{
@@ -518,7 +552,6 @@ void __init mem_init(void)
#endif
#endif
	reservedpages = end_pfn - totalram_pages -
	reservedpages = end_pfn - totalram_pages -
					absent_pages_in_range(0, end_pfn);
					absent_pages_in_range(0, end_pfn);

	after_bootmem = 1;
	after_bootmem = 1;


	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
@@ -534,7 +567,8 @@ void __init mem_init(void)
	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
				 VSYSCALL_END - VSYSCALL_START);
				 VSYSCALL_END - VSYSCALL_START);


	printk("Memory: %luk/%luk available (%ldk kernel code, %ldk reserved, %ldk data, %ldk init)\n",
	printk("Memory: %luk/%luk available (%ldk kernel code, "
				"%ldk reserved, %ldk data, %ldk init)\n",
		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
		(unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
		end_pfn << (PAGE_SHIFT-10),
		end_pfn << (PAGE_SHIFT-10),
		codesize >> 10,
		codesize >> 10,
@@ -561,6 +595,7 @@ void free_init_pages(char *what, unsigned long begin, unsigned long end)
	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
	set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
#else
#else
	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);
	printk(KERN_INFO "Freeing %s: %luk freed\n", what, (end - begin) >> 10);

	for (addr = begin; addr < end; addr += PAGE_SIZE) {
	for (addr = begin; addr < end; addr += PAGE_SIZE) {
		ClearPageReserved(virt_to_page(addr));
		ClearPageReserved(virt_to_page(addr));
		init_page_count(virt_to_page(addr));
		init_page_count(virt_to_page(addr));
@@ -633,11 +668,15 @@ void __init reserve_bootmem_generic(unsigned long phys, unsigned len)
	int nid = phys_to_nid(phys);
	int nid = phys_to_nid(phys);
#endif
#endif
	unsigned long pfn = phys >> PAGE_SHIFT;
	unsigned long pfn = phys >> PAGE_SHIFT;

	if (pfn >= end_pfn) {
	if (pfn >= end_pfn) {
		/* This can happen with kdump kernels when accessing firmware
		/*
		   tables. */
		 * This can happen with kdump kernels when accessing
		 * firmware tables:
		 */
		if (pfn < end_pfn_map)
		if (pfn < end_pfn_map)
			return;
			return;

		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %u\n",
				phys, len);
				phys, len);
		return;
		return;
@@ -677,22 +716,25 @@ int kern_addr_valid(unsigned long addr)
	pmd = pmd_offset(pud, addr);
	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd))
	if (pmd_none(*pmd))
		return 0;
		return 0;

	if (pmd_large(*pmd))
	if (pmd_large(*pmd))
		return pfn_valid(pmd_pfn(*pmd));
		return pfn_valid(pmd_pfn(*pmd));


	pte = pte_offset_kernel(pmd, addr);
	pte = pte_offset_kernel(pmd, addr);
	if (pte_none(*pte))
	if (pte_none(*pte))
		return 0;
		return 0;

	return pfn_valid(pte_pfn(*pte));
	return pfn_valid(pte_pfn(*pte));
}
}


/* A pseudo VMA to allow ptrace access for the vsyscall page.  This only
/*
   covers the 64bit vsyscall page now. 32bit has a real VMA now and does
 * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
   not need special handling anymore. */
 * covers the 64bit vsyscall page now. 32bit has a real VMA now and does

 * not need special handling anymore:
 */
static struct vm_area_struct gate_vma = {
static struct vm_area_struct gate_vma = {
	.vm_start	= VSYSCALL_START,
	.vm_start	= VSYSCALL_START,
	.vm_end = VSYSCALL_START + (VSYSCALL_MAPPED_PAGES << PAGE_SHIFT),
	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
	.vm_page_prot	= PAGE_READONLY_EXEC,
	.vm_page_prot	= PAGE_READONLY_EXEC,
	.vm_flags	= VM_READ | VM_EXEC
	.vm_flags	= VM_READ | VM_EXEC
};
};
@@ -709,14 +751,17 @@ struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
int in_gate_area(struct task_struct *task, unsigned long addr)
int in_gate_area(struct task_struct *task, unsigned long addr)
{
{
	struct vm_area_struct *vma = get_gate_vma(task);
	struct vm_area_struct *vma = get_gate_vma(task);

	if (!vma)
	if (!vma)
		return 0;
		return 0;

	return (addr >= vma->vm_start) && (addr < vma->vm_end);
	return (addr >= vma->vm_start) && (addr < vma->vm_end);
}
}


/* Use this when you have no reliable task/vma, typically from interrupt
/*
 * Use this when you have no reliable task/vma, typically from interrupt
 * context. It is less reliable than using the task's vma and may give
 * context. It is less reliable than using the task's vma and may give
 * false positives.
 * false positives:
 */
 */
int in_gate_area_no_task(unsigned long addr)
int in_gate_area_no_task(unsigned long addr)
{
{
@@ -736,8 +781,8 @@ const char *arch_vma_name(struct vm_area_struct *vma)
/*
/*
 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
 * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
 */
 */
int __meminit vmemmap_populate(struct page *start_page,
int __meminit
						unsigned long size, int node)
vmemmap_populate(struct page *start_page, unsigned long size, int node)
{
{
	unsigned long addr = (unsigned long)start_page;
	unsigned long addr = (unsigned long)start_page;
	unsigned long end = (unsigned long)(start_page + size);
	unsigned long end = (unsigned long)(start_page + size);
@@ -752,6 +797,7 @@ int __meminit vmemmap_populate(struct page *start_page,
		pgd = vmemmap_pgd_populate(addr, node);
		pgd = vmemmap_pgd_populate(addr, node);
		if (!pgd)
		if (!pgd)
			return -ENOMEM;
			return -ENOMEM;

		pud = vmemmap_pud_populate(pgd, addr, node);
		pud = vmemmap_pud_populate(pgd, addr, node);
		if (!pud)
		if (!pud)
			return -ENOMEM;
			return -ENOMEM;
@@ -759,19 +805,22 @@ int __meminit vmemmap_populate(struct page *start_page,
		pmd = pmd_offset(pud, addr);
		pmd = pmd_offset(pud, addr);
		if (pmd_none(*pmd)) {
		if (pmd_none(*pmd)) {
			pte_t entry;
			pte_t entry;
			void *p = vmemmap_alloc_block(PMD_SIZE, node);
			void *p;

			p = vmemmap_alloc_block(PMD_SIZE, node);
			if (!p)
			if (!p)
				return -ENOMEM;
				return -ENOMEM;


			entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL_LARGE);
			entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
							PAGE_KERNEL_LARGE);
			set_pmd(pmd, __pmd(pte_val(entry)));
			set_pmd(pmd, __pmd(pte_val(entry)));


			printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
			printk(KERN_DEBUG " [%lx-%lx] PMD ->%p on node %d\n",
				addr, addr + PMD_SIZE - 1, p, node);
				addr, addr + PMD_SIZE - 1, p, node);
		} else
		} else {
			vmemmap_verify((pte_t *)pmd, node, addr, next);
			vmemmap_verify((pte_t *)pmd, node, addr, next);
		}
		}

	}
	return 0;
	return 0;
}
}
#endif
#endif