Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 7334167b authored by Mythri P K's avatar Mythri P K Committed by Tomi Valkeinen
Browse files

OMAP4: DSS2: HDMI: Move the HDMI IP dependent audio



Move HDMI IP dependent audio functions from HDMI DSS file  to IP library.

Signed-off-by: default avatarMythri P K <mythripk@ti.com>
Signed-off-by: default avatarTomi Valkeinen <tomi.valkeinen@ti.com>
parent 7d983f39
Loading
Loading
Loading
Loading
+1 −256
Original line number Diff line number Diff line
@@ -37,6 +37,7 @@
	defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
#include <sound/soc.h>
#include <sound/pcm_params.h>
#include "ti_hdmi_4xxx_ip.h"
#endif

#include "ti_hdmi.h"
@@ -630,229 +631,6 @@ void omapdss_hdmi_display_disable(struct omap_dss_device *dssdev)

#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
	defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
static void hdmi_wp_audio_config_format(struct hdmi_ip_data *ip_data,
					struct hdmi_audio_format *aud_fmt)
{
	u32 r;

	DSSDBG("Enter hdmi_wp_audio_config_format\n");

	r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG);
	r = FLD_MOD(r, aud_fmt->stereo_channels, 26, 24);
	r = FLD_MOD(r, aud_fmt->active_chnnls_msk, 23, 16);
	r = FLD_MOD(r, aud_fmt->en_sig_blk_strt_end, 5, 5);
	r = FLD_MOD(r, aud_fmt->type, 4, 4);
	r = FLD_MOD(r, aud_fmt->justification, 3, 3);
	r = FLD_MOD(r, aud_fmt->sample_order, 2, 2);
	r = FLD_MOD(r, aud_fmt->samples_per_word, 1, 1);
	r = FLD_MOD(r, aud_fmt->sample_size, 0, 0);
	hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG, r);
}

static void hdmi_wp_audio_config_dma(struct hdmi_ip_data *ip_data,
					struct hdmi_audio_dma *aud_dma)
{
	u32 r;

	DSSDBG("Enter hdmi_wp_audio_config_dma\n");

	r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG2);
	r = FLD_MOD(r, aud_dma->transfer_size, 15, 8);
	r = FLD_MOD(r, aud_dma->block_size, 7, 0);
	hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG2, r);

	r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CTRL);
	r = FLD_MOD(r, aud_dma->mode, 9, 9);
	r = FLD_MOD(r, aud_dma->fifo_threshold, 8, 0);
	hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CTRL, r);
}

static void hdmi_core_audio_config(struct hdmi_ip_data *ip_data,
					struct hdmi_core_audio_config *cfg)
{
	u32 r;
	void __iomem *av_base = hdmi_av_base(ip_data);

	/* audio clock recovery parameters */
	r = hdmi_read_reg(av_base, HDMI_CORE_AV_ACR_CTRL);
	r = FLD_MOD(r, cfg->use_mclk, 2, 2);
	r = FLD_MOD(r, cfg->en_acr_pkt, 1, 1);
	r = FLD_MOD(r, cfg->cts_mode, 0, 0);
	hdmi_write_reg(av_base, HDMI_CORE_AV_ACR_CTRL, r);

	REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL1, cfg->n, 7, 0);
	REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL2, cfg->n >> 8, 7, 0);
	REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL3, cfg->n >> 16, 7, 0);

	if (cfg->cts_mode == HDMI_AUDIO_CTS_MODE_SW) {
		REG_FLD_MOD(av_base, HDMI_CORE_AV_CTS_SVAL1, cfg->cts, 7, 0);
		REG_FLD_MOD(av_base,
				HDMI_CORE_AV_CTS_SVAL2, cfg->cts >> 8, 7, 0);
		REG_FLD_MOD(av_base,
				HDMI_CORE_AV_CTS_SVAL3, cfg->cts >> 16, 7, 0);
	} else {
		/*
		 * HDMI IP uses this configuration to divide the MCLK to
		 * update CTS value.
		 */
		REG_FLD_MOD(av_base,
				HDMI_CORE_AV_FREQ_SVAL, cfg->mclk_mode, 2, 0);

		/* Configure clock for audio packets */
		REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_1,
				cfg->aud_par_busclk, 7, 0);
		REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_2,
				(cfg->aud_par_busclk >> 8), 7, 0);
		REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_3,
				(cfg->aud_par_busclk >> 16), 7, 0);
	}

	/* Override of SPDIF sample frequency with value in I2S_CHST4 */
	REG_FLD_MOD(av_base, HDMI_CORE_AV_SPDIF_CTRL,
						cfg->fs_override, 1, 1);

	/* I2S parameters */
	REG_FLD_MOD(av_base, HDMI_CORE_AV_I2S_CHST4,
						cfg->freq_sample, 3, 0);

	r = hdmi_read_reg(av_base, HDMI_CORE_AV_I2S_IN_CTRL);
	r = FLD_MOD(r, cfg->i2s_cfg.en_high_bitrate_aud, 7, 7);
	r = FLD_MOD(r, cfg->i2s_cfg.sck_edge_mode, 6, 6);
	r = FLD_MOD(r, cfg->i2s_cfg.cbit_order, 5, 5);
	r = FLD_MOD(r, cfg->i2s_cfg.vbit, 4, 4);
	r = FLD_MOD(r, cfg->i2s_cfg.ws_polarity, 3, 3);
	r = FLD_MOD(r, cfg->i2s_cfg.justification, 2, 2);
	r = FLD_MOD(r, cfg->i2s_cfg.direction, 1, 1);
	r = FLD_MOD(r, cfg->i2s_cfg.shift, 0, 0);
	hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_IN_CTRL, r);

	r = hdmi_read_reg(av_base, HDMI_CORE_AV_I2S_CHST5);
	r = FLD_MOD(r, cfg->freq_sample, 7, 4);
	r = FLD_MOD(r, cfg->i2s_cfg.word_length, 3, 1);
	r = FLD_MOD(r, cfg->i2s_cfg.word_max_length, 0, 0);
	hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_CHST5, r);

	REG_FLD_MOD(av_base, HDMI_CORE_AV_I2S_IN_LEN,
			cfg->i2s_cfg.in_length_bits, 3, 0);

	/* Audio channels and mode parameters */
	REG_FLD_MOD(av_base, HDMI_CORE_AV_HDMI_CTRL, cfg->layout, 2, 1);
	r = hdmi_read_reg(av_base, HDMI_CORE_AV_AUD_MODE);
	r = FLD_MOD(r, cfg->i2s_cfg.active_sds, 7, 4);
	r = FLD_MOD(r, cfg->en_dsd_audio, 3, 3);
	r = FLD_MOD(r, cfg->en_parallel_aud_input, 2, 2);
	r = FLD_MOD(r, cfg->en_spdif, 1, 1);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_MODE, r);
}

static void hdmi_core_audio_infoframe_config(struct hdmi_ip_data *ip_data,
		struct hdmi_core_infoframe_audio *info_aud)
{
	u8 val;
	u8 sum = 0, checksum = 0;
	void __iomem *av_base = hdmi_av_base(ip_data);

	/*
	 * Set audio info frame type, version and length as
	 * described in HDMI 1.4a Section 8.2.2 specification.
	 * Checksum calculation is defined in Section 5.3.5.
	 */
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_TYPE, 0x84);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_VERS, 0x01);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_LEN, 0x0a);
	sum += 0x84 + 0x001 + 0x00a;

	val = (info_aud->db1_coding_type << 4)
			| (info_aud->db1_channel_count - 1);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(0), val);
	sum += val;

	val = (info_aud->db2_sample_freq << 2) | info_aud->db2_sample_size;
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(1), val);
	sum += val;

	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(2), 0x00);

	val = info_aud->db4_channel_alloc;
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(3), val);
	sum += val;

	val = (info_aud->db5_downmix_inh << 7) | (info_aud->db5_lsv << 3);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(4), val);
	sum += val;

	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(5), 0x00);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(6), 0x00);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(7), 0x00);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(8), 0x00);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(9), 0x00);

	checksum = 0x100 - sum;
	hdmi_write_reg(av_base,
					HDMI_CORE_AV_AUDIO_CHSUM, checksum);

	/*
	 * TODO: Add MPEG and SPD enable and repeat cfg when EDID parsing
	 * is available.
	 */
}

static int hdmi_config_audio_acr(struct hdmi_ip_data *ip_data,
				u32 sample_freq, u32 *n, u32 *cts)
{
	u32 r;
	u32 deep_color = 0;
	u32 pclk = hdmi.cfg.timings.timings.pixel_clock;

	if (n == NULL || cts == NULL)
		return -EINVAL;
	/*
	 * Obtain current deep color configuration. This needed
	 * to calculate the TMDS clock based on the pixel clock.
	 */
	r = REG_GET(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_CFG, 1, 0);
	switch (r) {
	case 1: /* No deep color selected */
		deep_color = 100;
		break;
	case 2: /* 10-bit deep color selected */
		deep_color = 125;
		break;
	case 3: /* 12-bit deep color selected */
		deep_color = 150;
		break;
	default:
		return -EINVAL;
	}

	switch (sample_freq) {
	case 32000:
		if ((deep_color == 125) && ((pclk == 54054)
				|| (pclk == 74250)))
			*n = 8192;
		else
			*n = 4096;
		break;
	case 44100:
		*n = 6272;
		break;
	case 48000:
		if ((deep_color == 125) && ((pclk == 54054)
				|| (pclk == 74250)))
			*n = 8192;
		else
			*n = 6144;
		break;
	default:
		*n = 0;
		return -EINVAL;
	}

	/* Calculate CTS. See HDMI 1.3a or 1.4a specifications */
	*cts = pclk * (*n / 128) * deep_color / (sample_freq / 10);

	return 0;
}

static int hdmi_audio_hw_params(struct hdmi_ip_data *ip_data,
					struct snd_pcm_substream *substream,
@@ -988,39 +766,6 @@ static int hdmi_audio_hw_params(struct hdmi_ip_data *ip_data,
	return 0;
}

static int hdmi_audio_trigger(struct hdmi_ip_data *ip_data,
				struct snd_pcm_substream *substream, int cmd,
				struct snd_soc_dai *dai)
{
	int err = 0;
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		REG_FLD_MOD(hdmi_av_base(ip_data),
					HDMI_CORE_AV_AUD_MODE, 1, 0, 0);
		REG_FLD_MOD(hdmi_wp_base(ip_data),
					HDMI_WP_AUDIO_CTRL, 1, 31, 31);
		REG_FLD_MOD(hdmi_wp_base(ip_data),
					HDMI_WP_AUDIO_CTRL, 1, 30, 30);
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		REG_FLD_MOD(hdmi_av_base(ip_data),
					HDMI_CORE_AV_AUD_MODE, 0, 0, 0);
		REG_FLD_MOD(hdmi_wp_base(ip_data),
					HDMI_WP_AUDIO_CTRL, 0, 30, 30);
		REG_FLD_MOD(hdmi_wp_base(ip_data),
					HDMI_WP_AUDIO_CTRL, 0, 31, 31);
		break;
	default:
		err = -EINVAL;
	}
	return err;
}

static int hdmi_audio_startup(struct snd_pcm_substream *substream,
				  struct snd_soc_dai *dai)
{
+260 −0
Original line number Diff line number Diff line
@@ -765,3 +765,263 @@ void hdmi_basic_configure(struct hdmi_ip_data *ip_data)
	repeat_cfg.audio_pkt_repeat = HDMI_PACKETREPEATON;
	hdmi_core_av_packet_config(ip_data, repeat_cfg);
}

#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
	defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
void hdmi_wp_audio_config_format(struct hdmi_ip_data *ip_data,
					struct hdmi_audio_format *aud_fmt)
{
	u32 r;

	DSSDBG("Enter hdmi_wp_audio_config_format\n");

	r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG);
	r = FLD_MOD(r, aud_fmt->stereo_channels, 26, 24);
	r = FLD_MOD(r, aud_fmt->active_chnnls_msk, 23, 16);
	r = FLD_MOD(r, aud_fmt->en_sig_blk_strt_end, 5, 5);
	r = FLD_MOD(r, aud_fmt->type, 4, 4);
	r = FLD_MOD(r, aud_fmt->justification, 3, 3);
	r = FLD_MOD(r, aud_fmt->sample_order, 2, 2);
	r = FLD_MOD(r, aud_fmt->samples_per_word, 1, 1);
	r = FLD_MOD(r, aud_fmt->sample_size, 0, 0);
	hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG, r);
}

void hdmi_wp_audio_config_dma(struct hdmi_ip_data *ip_data,
					struct hdmi_audio_dma *aud_dma)
{
	u32 r;

	DSSDBG("Enter hdmi_wp_audio_config_dma\n");

	r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG2);
	r = FLD_MOD(r, aud_dma->transfer_size, 15, 8);
	r = FLD_MOD(r, aud_dma->block_size, 7, 0);
	hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CFG2, r);

	r = hdmi_read_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CTRL);
	r = FLD_MOD(r, aud_dma->mode, 9, 9);
	r = FLD_MOD(r, aud_dma->fifo_threshold, 8, 0);
	hdmi_write_reg(hdmi_wp_base(ip_data), HDMI_WP_AUDIO_CTRL, r);
}

void hdmi_core_audio_config(struct hdmi_ip_data *ip_data,
					struct hdmi_core_audio_config *cfg)
{
	u32 r;
	void __iomem *av_base = hdmi_av_base(ip_data);

	/* audio clock recovery parameters */
	r = hdmi_read_reg(av_base, HDMI_CORE_AV_ACR_CTRL);
	r = FLD_MOD(r, cfg->use_mclk, 2, 2);
	r = FLD_MOD(r, cfg->en_acr_pkt, 1, 1);
	r = FLD_MOD(r, cfg->cts_mode, 0, 0);
	hdmi_write_reg(av_base, HDMI_CORE_AV_ACR_CTRL, r);

	REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL1, cfg->n, 7, 0);
	REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL2, cfg->n >> 8, 7, 0);
	REG_FLD_MOD(av_base, HDMI_CORE_AV_N_SVAL3, cfg->n >> 16, 7, 0);

	if (cfg->cts_mode == HDMI_AUDIO_CTS_MODE_SW) {
		REG_FLD_MOD(av_base, HDMI_CORE_AV_CTS_SVAL1, cfg->cts, 7, 0);
		REG_FLD_MOD(av_base,
				HDMI_CORE_AV_CTS_SVAL2, cfg->cts >> 8, 7, 0);
		REG_FLD_MOD(av_base,
				HDMI_CORE_AV_CTS_SVAL3, cfg->cts >> 16, 7, 0);
	} else {
		/*
		 * HDMI IP uses this configuration to divide the MCLK to
		 * update CTS value.
		 */
		REG_FLD_MOD(av_base,
				HDMI_CORE_AV_FREQ_SVAL, cfg->mclk_mode, 2, 0);

		/* Configure clock for audio packets */
		REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_1,
				cfg->aud_par_busclk, 7, 0);
		REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_2,
				(cfg->aud_par_busclk >> 8), 7, 0);
		REG_FLD_MOD(av_base, HDMI_CORE_AV_AUD_PAR_BUSCLK_3,
				(cfg->aud_par_busclk >> 16), 7, 0);
	}

	/* Override of SPDIF sample frequency with value in I2S_CHST4 */
	REG_FLD_MOD(av_base, HDMI_CORE_AV_SPDIF_CTRL,
						cfg->fs_override, 1, 1);

	/* I2S parameters */
	REG_FLD_MOD(av_base, HDMI_CORE_AV_I2S_CHST4,
						cfg->freq_sample, 3, 0);

	r = hdmi_read_reg(av_base, HDMI_CORE_AV_I2S_IN_CTRL);
	r = FLD_MOD(r, cfg->i2s_cfg.en_high_bitrate_aud, 7, 7);
	r = FLD_MOD(r, cfg->i2s_cfg.sck_edge_mode, 6, 6);
	r = FLD_MOD(r, cfg->i2s_cfg.cbit_order, 5, 5);
	r = FLD_MOD(r, cfg->i2s_cfg.vbit, 4, 4);
	r = FLD_MOD(r, cfg->i2s_cfg.ws_polarity, 3, 3);
	r = FLD_MOD(r, cfg->i2s_cfg.justification, 2, 2);
	r = FLD_MOD(r, cfg->i2s_cfg.direction, 1, 1);
	r = FLD_MOD(r, cfg->i2s_cfg.shift, 0, 0);
	hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_IN_CTRL, r);

	r = hdmi_read_reg(av_base, HDMI_CORE_AV_I2S_CHST5);
	r = FLD_MOD(r, cfg->freq_sample, 7, 4);
	r = FLD_MOD(r, cfg->i2s_cfg.word_length, 3, 1);
	r = FLD_MOD(r, cfg->i2s_cfg.word_max_length, 0, 0);
	hdmi_write_reg(av_base, HDMI_CORE_AV_I2S_CHST5, r);

	REG_FLD_MOD(av_base, HDMI_CORE_AV_I2S_IN_LEN,
			cfg->i2s_cfg.in_length_bits, 3, 0);

	/* Audio channels and mode parameters */
	REG_FLD_MOD(av_base, HDMI_CORE_AV_HDMI_CTRL, cfg->layout, 2, 1);
	r = hdmi_read_reg(av_base, HDMI_CORE_AV_AUD_MODE);
	r = FLD_MOD(r, cfg->i2s_cfg.active_sds, 7, 4);
	r = FLD_MOD(r, cfg->en_dsd_audio, 3, 3);
	r = FLD_MOD(r, cfg->en_parallel_aud_input, 2, 2);
	r = FLD_MOD(r, cfg->en_spdif, 1, 1);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_MODE, r);
}

void hdmi_core_audio_infoframe_config(struct hdmi_ip_data *ip_data,
		struct hdmi_core_infoframe_audio *info_aud)
{
	u8 val;
	u8 sum = 0, checksum = 0;
	void __iomem *av_base = hdmi_av_base(ip_data);

	/*
	 * Set audio info frame type, version and length as
	 * described in HDMI 1.4a Section 8.2.2 specification.
	 * Checksum calculation is defined in Section 5.3.5.
	 */
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_TYPE, 0x84);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_VERS, 0x01);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUDIO_LEN, 0x0a);
	sum += 0x84 + 0x001 + 0x00a;

	val = (info_aud->db1_coding_type << 4)
			| (info_aud->db1_channel_count - 1);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(0), val);
	sum += val;

	val = (info_aud->db2_sample_freq << 2) | info_aud->db2_sample_size;
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(1), val);
	sum += val;

	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(2), 0x00);

	val = info_aud->db4_channel_alloc;
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(3), val);
	sum += val;

	val = (info_aud->db5_downmix_inh << 7) | (info_aud->db5_lsv << 3);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(4), val);
	sum += val;

	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(5), 0x00);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(6), 0x00);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(7), 0x00);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(8), 0x00);
	hdmi_write_reg(av_base, HDMI_CORE_AV_AUD_DBYTE(9), 0x00);

	checksum = 0x100 - sum;
	hdmi_write_reg(av_base,
					HDMI_CORE_AV_AUDIO_CHSUM, checksum);

	/*
	 * TODO: Add MPEG and SPD enable and repeat cfg when EDID parsing
	 * is available.
	 */
}

int hdmi_config_audio_acr(struct hdmi_ip_data *ip_data,
				u32 sample_freq, u32 *n, u32 *cts)
{
	u32 r;
	u32 deep_color = 0;
	u32 pclk = ip_data->cfg.timings.timings.pixel_clock;

	if (n == NULL || cts == NULL)
		return -EINVAL;
	/*
	 * Obtain current deep color configuration. This needed
	 * to calculate the TMDS clock based on the pixel clock.
	 */
	r = REG_GET(hdmi_wp_base(ip_data), HDMI_WP_VIDEO_CFG, 1, 0);
	switch (r) {
	case 1: /* No deep color selected */
		deep_color = 100;
		break;
	case 2: /* 10-bit deep color selected */
		deep_color = 125;
		break;
	case 3: /* 12-bit deep color selected */
		deep_color = 150;
		break;
	default:
		return -EINVAL;
	}

	switch (sample_freq) {
	case 32000:
		if ((deep_color == 125) && ((pclk == 54054)
				|| (pclk == 74250)))
			*n = 8192;
		else
			*n = 4096;
		break;
	case 44100:
		*n = 6272;
		break;
	case 48000:
		if ((deep_color == 125) && ((pclk == 54054)
				|| (pclk == 74250)))
			*n = 8192;
		else
			*n = 6144;
		break;
	default:
		*n = 0;
		return -EINVAL;
	}

	/* Calculate CTS. See HDMI 1.3a or 1.4a specifications */
	*cts = pclk * (*n / 128) * deep_color / (sample_freq / 10);

	return 0;
}

int hdmi_audio_trigger(struct hdmi_ip_data *ip_data,
				struct snd_pcm_substream *substream, int cmd,
				struct snd_soc_dai *dai)
{
	int err = 0;
	switch (cmd) {
	case SNDRV_PCM_TRIGGER_START:
	case SNDRV_PCM_TRIGGER_RESUME:
	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
		REG_FLD_MOD(hdmi_av_base(ip_data),
					HDMI_CORE_AV_AUD_MODE, 1, 0, 0);
		REG_FLD_MOD(hdmi_wp_base(ip_data),
					HDMI_WP_AUDIO_CTRL, 1, 31, 31);
		REG_FLD_MOD(hdmi_wp_base(ip_data),
					HDMI_WP_AUDIO_CTRL, 1, 30, 30);
		break;

	case SNDRV_PCM_TRIGGER_STOP:
	case SNDRV_PCM_TRIGGER_SUSPEND:
	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
		REG_FLD_MOD(hdmi_av_base(ip_data),
					HDMI_CORE_AV_AUD_MODE, 0, 0, 0);
		REG_FLD_MOD(hdmi_wp_base(ip_data),
					HDMI_WP_AUDIO_CTRL, 0, 30, 30);
		REG_FLD_MOD(hdmi_wp_base(ip_data),
					HDMI_WP_AUDIO_CTRL, 0, 31, 31);
		break;
	default:
		err = -EINVAL;
	}
	return err;
}
#endif
+22 −0
Original line number Diff line number Diff line
@@ -24,6 +24,11 @@
#include <linux/string.h>
#include <video/omapdss.h>
#include "ti_hdmi.h"
#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
	defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
#include <sound/soc.h>
#include <sound/pcm_params.h>
#endif

struct hdmi_reg { u16 idx; };

@@ -572,4 +577,21 @@ struct hdmi_core_audio_config {
	bool					en_parallel_aud_input;
	bool					en_spdif;
};

#if defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI) || \
	defined(CONFIG_SND_OMAP_SOC_OMAP4_HDMI_MODULE)
int hdmi_audio_trigger(struct hdmi_ip_data *ip_data,
				struct snd_pcm_substream *substream, int cmd,
				struct snd_soc_dai *dai);
int hdmi_config_audio_acr(struct hdmi_ip_data *ip_data,
				u32 sample_freq, u32 *n, u32 *cts);
void hdmi_core_audio_infoframe_config(struct hdmi_ip_data *ip_data,
		struct hdmi_core_infoframe_audio *info_aud);
void hdmi_core_audio_config(struct hdmi_ip_data *ip_data,
					struct hdmi_core_audio_config *cfg);
void hdmi_wp_audio_config_dma(struct hdmi_ip_data *ip_data,
					struct hdmi_audio_dma *aud_dma);
void hdmi_wp_audio_config_format(struct hdmi_ip_data *ip_data,
					struct hdmi_audio_format *aud_fmt);
#endif
#endif