Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 5ab5afd8 authored by Thomas Petazzoni's avatar Thomas Petazzoni Committed by Jason Cooper
Browse files

ARM: mvebu: implement Armada 375 coherency workaround



The early revisions of Armada 375 SOCs (Z1 stepping) have a bug in the
I/O coherency unit that prevents using the normal method for the I/O
coherency barrier. The recommended workaround is to use a XOR memset
transfer to act as the I/O coherency barrier.

This involves "borrowing" a XOR engine, which gets disabled in the
Device Tree so the normal XOR driver doesn't use it.

Signed-off-by: default avatarThomas Petazzoni <thomas.petazzoni@free-electrons.com>
Link: https://lkml.kernel.org/r/1397483228-25625-8-git-send-email-thomas.petazzoni@free-electrons.com


Signed-off-by: default avatarJason Cooper <jason@lakedaemon.net>
parent 77fa4b9a
Loading
Loading
Loading
Loading
+165 −3
Original line number Original line Diff line number Diff line
@@ -17,6 +17,8 @@
 * supplies basic routines for configuring and controlling hardware coherency
 * supplies basic routines for configuring and controlling hardware coherency
 */
 */


#define pr_fmt(fmt) "mvebu-coherency: " fmt

#include <linux/kernel.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/init.h>
#include <linux/of_address.h>
#include <linux/of_address.h>
@@ -24,6 +26,9 @@
#include <linux/smp.h>
#include <linux/smp.h>
#include <linux/dma-mapping.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/mbus.h>
#include <linux/clk.h>
#include <asm/smp_plat.h>
#include <asm/smp_plat.h>
#include <asm/cacheflush.h>
#include <asm/cacheflush.h>
#include "armada-370-xp.h"
#include "armada-370-xp.h"
@@ -66,8 +71,157 @@ int set_cpu_coherent(unsigned int hw_cpu_id, int smp_group_id)
	return ll_set_cpu_coherent(coherency_base, hw_cpu_id);
	return ll_set_cpu_coherent(coherency_base, hw_cpu_id);
}
}


/*
 * The below code implements the I/O coherency workaround on Armada
 * 375. This workaround consists in using the two channels of the
 * first XOR engine to trigger a XOR transaction that serves as the
 * I/O coherency barrier.
 */

static void __iomem *xor_base, *xor_high_base;
static dma_addr_t coherency_wa_buf_phys[CONFIG_NR_CPUS];
static void *coherency_wa_buf[CONFIG_NR_CPUS];
static bool coherency_wa_enabled;

#define XOR_CONFIG(chan)            (0x10 + (chan * 4))
#define XOR_ACTIVATION(chan)        (0x20 + (chan * 4))
#define WINDOW_BAR_ENABLE(chan)     (0x240 + ((chan) << 2))
#define WINDOW_BASE(w)              (0x250 + ((w) << 2))
#define WINDOW_SIZE(w)              (0x270 + ((w) << 2))
#define WINDOW_REMAP_HIGH(w)        (0x290 + ((w) << 2))
#define WINDOW_OVERRIDE_CTRL(chan)  (0x2A0 + ((chan) << 2))
#define XOR_DEST_POINTER(chan)      (0x2B0 + (chan * 4))
#define XOR_BLOCK_SIZE(chan)        (0x2C0 + (chan * 4))
#define XOR_INIT_VALUE_LOW           0x2E0
#define XOR_INIT_VALUE_HIGH          0x2E4

static inline void mvebu_hwcc_armada375_sync_io_barrier_wa(void)
{
	int idx = smp_processor_id();

	/* Write '1' to the first word of the buffer */
	writel(0x1, coherency_wa_buf[idx]);

	/* Wait until the engine is idle */
	while ((readl(xor_base + XOR_ACTIVATION(idx)) >> 4) & 0x3)
		;

	dmb();

	/* Trigger channel */
	writel(0x1, xor_base + XOR_ACTIVATION(idx));

	/* Poll the data until it is cleared by the XOR transaction */
	while (readl(coherency_wa_buf[idx]))
		;
}

static void __init armada_375_coherency_init_wa(void)
{
	const struct mbus_dram_target_info *dram;
	struct device_node *xor_node;
	struct property *xor_status;
	struct clk *xor_clk;
	u32 win_enable = 0;
	int i;

	pr_warn("enabling coherency workaround for Armada 375 Z1, one XOR engine disabled\n");

	/*
	 * Since the workaround uses one XOR engine, we grab a
	 * reference to its Device Tree node first.
	 */
	xor_node = of_find_compatible_node(NULL, NULL, "marvell,orion-xor");
	BUG_ON(!xor_node);

	/*
	 * Then we mark it as disabled so that the real XOR driver
	 * will not use it.
	 */
	xor_status = kzalloc(sizeof(struct property), GFP_KERNEL);
	BUG_ON(!xor_status);

	xor_status->value = kstrdup("disabled", GFP_KERNEL);
	BUG_ON(!xor_status->value);

	xor_status->length = 8;
	xor_status->name = kstrdup("status", GFP_KERNEL);
	BUG_ON(!xor_status->name);

	of_update_property(xor_node, xor_status);

	/*
	 * And we remap the registers, get the clock, and do the
	 * initial configuration of the XOR engine.
	 */
	xor_base = of_iomap(xor_node, 0);
	xor_high_base = of_iomap(xor_node, 1);

	xor_clk = of_clk_get_by_name(xor_node, NULL);
	BUG_ON(!xor_clk);

	clk_prepare_enable(xor_clk);

	dram = mv_mbus_dram_info();

	for (i = 0; i < 8; i++) {
		writel(0, xor_base + WINDOW_BASE(i));
		writel(0, xor_base + WINDOW_SIZE(i));
		if (i < 4)
			writel(0, xor_base + WINDOW_REMAP_HIGH(i));
	}

	for (i = 0; i < dram->num_cs; i++) {
		const struct mbus_dram_window *cs = dram->cs + i;
		writel((cs->base & 0xffff0000) |
		       (cs->mbus_attr << 8) |
		       dram->mbus_dram_target_id, xor_base + WINDOW_BASE(i));
		writel((cs->size - 1) & 0xffff0000, xor_base + WINDOW_SIZE(i));

		win_enable |= (1 << i);
		win_enable |= 3 << (16 + (2 * i));
	}

	writel(win_enable, xor_base + WINDOW_BAR_ENABLE(0));
	writel(win_enable, xor_base + WINDOW_BAR_ENABLE(1));
	writel(0, xor_base + WINDOW_OVERRIDE_CTRL(0));
	writel(0, xor_base + WINDOW_OVERRIDE_CTRL(1));

	for (i = 0; i < CONFIG_NR_CPUS; i++) {
		coherency_wa_buf[i] = kzalloc(PAGE_SIZE, GFP_KERNEL);
		BUG_ON(!coherency_wa_buf[i]);

		/*
		 * We can't use the DMA mapping API, since we don't
		 * have a valid 'struct device' pointer
		 */
		coherency_wa_buf_phys[i] =
			virt_to_phys(coherency_wa_buf[i]);
		BUG_ON(!coherency_wa_buf_phys[i]);

		/*
		 * Configure the XOR engine for memset operation, with
		 * a 128 bytes block size
		 */
		writel(0x444, xor_base + XOR_CONFIG(i));
		writel(128, xor_base + XOR_BLOCK_SIZE(i));
		writel(coherency_wa_buf_phys[i],
		       xor_base + XOR_DEST_POINTER(i));
	}

	writel(0x0, xor_base + XOR_INIT_VALUE_LOW);
	writel(0x0, xor_base + XOR_INIT_VALUE_HIGH);

	coherency_wa_enabled = true;
}

static inline void mvebu_hwcc_sync_io_barrier(void)
static inline void mvebu_hwcc_sync_io_barrier(void)
{
{
	if (coherency_wa_enabled) {
		mvebu_hwcc_armada375_sync_io_barrier_wa();
		return;
	}

	writel(0x1, coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET);
	writel(0x1, coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET);
	while (readl(coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET) & 0x1);
	while (readl(coherency_cpu_base + IO_SYNC_BARRIER_CTL_OFFSET) & 0x1);
}
}
@@ -198,9 +352,17 @@ int __init coherency_init(void)


static int __init coherency_late_init(void)
static int __init coherency_late_init(void)
{
{
	if (coherency_available())
	int type = coherency_type();

	if (type == COHERENCY_FABRIC_TYPE_NONE)
		return 0;

	if (type == COHERENCY_FABRIC_TYPE_ARMADA_375)
		armada_375_coherency_init_wa();

	bus_register_notifier(&platform_bus_type,
	bus_register_notifier(&platform_bus_type,
			      &mvebu_hwcc_platform_nb);
			      &mvebu_hwcc_platform_nb);

	return 0;
	return 0;
}
}