Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 15a3d11b authored by Linus Torvalds's avatar Linus Torvalds
Browse files

Merge branch 'sched-core-for-linus' of...

Merge branch 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip

* 'sched-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
  sched: Increase SCHED_LOAD_SCALE resolution
  sched: Introduce SCHED_POWER_SCALE to scale cpu_power calculations
  sched: Cleanup set_load_weight()
parents 1f3a8e09 c8b28116
Loading
Loading
Loading
Loading
+28 −6
Original line number Original line Diff line number Diff line
@@ -786,17 +786,39 @@ enum cpu_idle_type {
};
};


/*
/*
 * sched-domains (multiprocessor balancing) declarations:
 * Increase resolution of nice-level calculations for 64-bit architectures.
 */
 * The extra resolution improves shares distribution and load balancing of
 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 * hierarchies, especially on larger systems. This is not a user-visible change
 * and does not change the user-interface for setting shares/weights.
 *
 * We increase resolution only if we have enough bits to allow this increased
 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
 * increased costs.
 */
#if BITS_PER_LONG > 32
# define SCHED_LOAD_RESOLUTION	10
# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
#else
# define SCHED_LOAD_RESOLUTION	0
# define scale_load(w)		(w)
# define scale_load_down(w)	(w)
#endif


/*
#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
 * Increase resolution of nice-level calculations:
 */
#define SCHED_LOAD_SHIFT	10
#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)


#define SCHED_LOAD_SCALE_FUZZ	SCHED_LOAD_SCALE
/*
 * Increase resolution of cpu_power calculations
 */
#define SCHED_POWER_SHIFT	10
#define SCHED_POWER_SCALE	(1L << SCHED_POWER_SHIFT)


/*
 * sched-domains (multiprocessor balancing) declarations:
 */
#ifdef CONFIG_SMP
#ifdef CONFIG_SMP
#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
#define SD_LOAD_BALANCE		0x0001	/* Do load balancing on this domain. */
#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
#define SD_BALANCE_NEWIDLE	0x0002	/* Balance when about to become idle */
+27 −12
Original line number Original line Diff line number Diff line
@@ -293,7 +293,7 @@ static DEFINE_SPINLOCK(task_group_lock);
 *  limitation from this.)
 *  limitation from this.)
 */
 */
#define MIN_SHARES	2
#define MIN_SHARES	2
#define MAX_SHARES	(1UL << 18)
#define MAX_SHARES	(1UL << (18 + SCHED_LOAD_RESOLUTION))


static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
#endif
#endif
@@ -1330,13 +1330,25 @@ calc_delta_mine(unsigned long delta_exec, unsigned long weight,
{
{
	u64 tmp;
	u64 tmp;


	tmp = (u64)delta_exec * weight;
	/*
	 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
	 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
	 * 2^SCHED_LOAD_RESOLUTION.
	 */
	if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
		tmp = (u64)delta_exec * scale_load_down(weight);
	else
		tmp = (u64)delta_exec;


	if (!lw->inv_weight) {
	if (!lw->inv_weight) {
		if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
		unsigned long w = scale_load_down(lw->weight);

		if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
			lw->inv_weight = 1;
			lw->inv_weight = 1;
		else if (unlikely(!w))
			lw->inv_weight = WMULT_CONST;
		else
		else
			lw->inv_weight = WMULT_CONST / lw->weight;
			lw->inv_weight = WMULT_CONST / w;
	}
	}


	/*
	/*
@@ -1778,17 +1790,20 @@ static void dec_nr_running(struct rq *rq)


static void set_load_weight(struct task_struct *p)
static void set_load_weight(struct task_struct *p)
{
{
	int prio = p->static_prio - MAX_RT_PRIO;
	struct load_weight *load = &p->se.load;

	/*
	/*
	 * SCHED_IDLE tasks get minimal weight:
	 * SCHED_IDLE tasks get minimal weight:
	 */
	 */
	if (p->policy == SCHED_IDLE) {
	if (p->policy == SCHED_IDLE) {
		p->se.load.weight = WEIGHT_IDLEPRIO;
		load->weight = scale_load(WEIGHT_IDLEPRIO);
		p->se.load.inv_weight = WMULT_IDLEPRIO;
		load->inv_weight = WMULT_IDLEPRIO;
		return;
		return;
	}
	}


	p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
	load->weight = scale_load(prio_to_weight[prio]);
	p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
	load->inv_weight = prio_to_wmult[prio];
}
}


static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
@@ -6527,7 +6542,7 @@ static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
		cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));


		printk(KERN_CONT " %s", str);
		printk(KERN_CONT " %s", str);
		if (group->cpu_power != SCHED_LOAD_SCALE) {
		if (group->cpu_power != SCHED_POWER_SCALE) {
			printk(KERN_CONT " (cpu_power = %d)",
			printk(KERN_CONT " (cpu_power = %d)",
				group->cpu_power);
				group->cpu_power);
		}
		}
@@ -7902,7 +7917,7 @@ void __init sched_init(void)
#ifdef CONFIG_SMP
#ifdef CONFIG_SMP
		rq->sd = NULL;
		rq->sd = NULL;
		rq->rd = NULL;
		rq->rd = NULL;
		rq->cpu_power = SCHED_LOAD_SCALE;
		rq->cpu_power = SCHED_POWER_SCALE;
		rq->post_schedule = 0;
		rq->post_schedule = 0;
		rq->active_balance = 0;
		rq->active_balance = 0;
		rq->next_balance = jiffies;
		rq->next_balance = jiffies;
@@ -8806,14 +8821,14 @@ cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
				u64 shareval)
				u64 shareval)
{
{
	return sched_group_set_shares(cgroup_tg(cgrp), shareval);
	return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
}
}


static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
{
{
	struct task_group *tg = cgroup_tg(cgrp);
	struct task_group *tg = cgroup_tg(cgrp);


	return (u64) tg->shares;
	return (u64) scale_load_down(tg->shares);
}
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
#endif /* CONFIG_FAIR_GROUP_SCHED */


+27 −25
Original line number Original line Diff line number Diff line
@@ -1584,7 +1584,7 @@ find_idlest_group(struct sched_domain *sd, struct task_struct *p,
		}
		}


		/* Adjust by relative CPU power of the group */
		/* Adjust by relative CPU power of the group */
		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
		avg_load = (avg_load * SCHED_POWER_SCALE) / group->cpu_power;


		if (local_group) {
		if (local_group) {
			this_load = avg_load;
			this_load = avg_load;
@@ -1722,7 +1722,7 @@ select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
				nr_running += cpu_rq(i)->cfs.nr_running;
				nr_running += cpu_rq(i)->cfs.nr_running;
			}
			}


			capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
			capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);


			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
			if (tmp->flags & SD_POWERSAVINGS_BALANCE)
				nr_running /= 2;
				nr_running /= 2;
@@ -2570,7 +2570,7 @@ static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,


unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
{
{
	return SCHED_LOAD_SCALE;
	return SCHED_POWER_SCALE;
}
}


unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
@@ -2607,10 +2607,10 @@ unsigned long scale_rt_power(int cpu)
		available = total - rq->rt_avg;
		available = total - rq->rt_avg;
	}
	}


	if (unlikely((s64)total < SCHED_LOAD_SCALE))
	if (unlikely((s64)total < SCHED_POWER_SCALE))
		total = SCHED_LOAD_SCALE;
		total = SCHED_POWER_SCALE;


	total >>= SCHED_LOAD_SHIFT;
	total >>= SCHED_POWER_SHIFT;


	return div_u64(available, total);
	return div_u64(available, total);
}
}
@@ -2618,7 +2618,7 @@ unsigned long scale_rt_power(int cpu)
static void update_cpu_power(struct sched_domain *sd, int cpu)
static void update_cpu_power(struct sched_domain *sd, int cpu)
{
{
	unsigned long weight = sd->span_weight;
	unsigned long weight = sd->span_weight;
	unsigned long power = SCHED_LOAD_SCALE;
	unsigned long power = SCHED_POWER_SCALE;
	struct sched_group *sdg = sd->groups;
	struct sched_group *sdg = sd->groups;


	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
	if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
@@ -2627,7 +2627,7 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
		else
		else
			power *= default_scale_smt_power(sd, cpu);
			power *= default_scale_smt_power(sd, cpu);


		power >>= SCHED_LOAD_SHIFT;
		power >>= SCHED_POWER_SHIFT;
	}
	}


	sdg->cpu_power_orig = power;
	sdg->cpu_power_orig = power;
@@ -2637,10 +2637,10 @@ static void update_cpu_power(struct sched_domain *sd, int cpu)
	else
	else
		power *= default_scale_freq_power(sd, cpu);
		power *= default_scale_freq_power(sd, cpu);


	power >>= SCHED_LOAD_SHIFT;
	power >>= SCHED_POWER_SHIFT;


	power *= scale_rt_power(cpu);
	power *= scale_rt_power(cpu);
	power >>= SCHED_LOAD_SHIFT;
	power >>= SCHED_POWER_SHIFT;


	if (!power)
	if (!power)
		power = 1;
		power = 1;
@@ -2682,7 +2682,7 @@ static inline int
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
{
{
	/*
	/*
	 * Only siblings can have significantly less than SCHED_LOAD_SCALE
	 * Only siblings can have significantly less than SCHED_POWER_SCALE
	 */
	 */
	if (!(sd->flags & SD_SHARE_CPUPOWER))
	if (!(sd->flags & SD_SHARE_CPUPOWER))
		return 0;
		return 0;
@@ -2770,7 +2770,7 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
	}
	}


	/* Adjust by relative CPU power of the group */
	/* Adjust by relative CPU power of the group */
	sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
	sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->cpu_power;


	/*
	/*
	 * Consider the group unbalanced when the imbalance is larger
	 * Consider the group unbalanced when the imbalance is larger
@@ -2787,7 +2787,8 @@ static inline void update_sg_lb_stats(struct sched_domain *sd,
	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
	if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
		sgs->group_imb = 1;
		sgs->group_imb = 1;


	sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
	sgs->group_capacity = DIV_ROUND_CLOSEST(group->cpu_power,
						SCHED_POWER_SCALE);
	if (!sgs->group_capacity)
	if (!sgs->group_capacity)
		sgs->group_capacity = fix_small_capacity(sd, group);
		sgs->group_capacity = fix_small_capacity(sd, group);
	sgs->group_weight = group->group_weight;
	sgs->group_weight = group->group_weight;
@@ -2961,7 +2962,7 @@ static int check_asym_packing(struct sched_domain *sd,
		return 0;
		return 0;


	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
	*imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->cpu_power,
				       SCHED_LOAD_SCALE);
				       SCHED_POWER_SCALE);
	return 1;
	return 1;
}
}


@@ -2990,7 +2991,7 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
			cpu_avg_load_per_task(this_cpu);
			cpu_avg_load_per_task(this_cpu);


	scaled_busy_load_per_task = sds->busiest_load_per_task
	scaled_busy_load_per_task = sds->busiest_load_per_task
						 * SCHED_LOAD_SCALE;
					 * SCHED_POWER_SCALE;
	scaled_busy_load_per_task /= sds->busiest->cpu_power;
	scaled_busy_load_per_task /= sds->busiest->cpu_power;


	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
	if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
@@ -3009,10 +3010,10 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,
			min(sds->busiest_load_per_task, sds->max_load);
			min(sds->busiest_load_per_task, sds->max_load);
	pwr_now += sds->this->cpu_power *
	pwr_now += sds->this->cpu_power *
			min(sds->this_load_per_task, sds->this_load);
			min(sds->this_load_per_task, sds->this_load);
	pwr_now /= SCHED_LOAD_SCALE;
	pwr_now /= SCHED_POWER_SCALE;


	/* Amount of load we'd subtract */
	/* Amount of load we'd subtract */
	tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
	tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
		sds->busiest->cpu_power;
		sds->busiest->cpu_power;
	if (sds->max_load > tmp)
	if (sds->max_load > tmp)
		pwr_move += sds->busiest->cpu_power *
		pwr_move += sds->busiest->cpu_power *
@@ -3020,15 +3021,15 @@ static inline void fix_small_imbalance(struct sd_lb_stats *sds,


	/* Amount of load we'd add */
	/* Amount of load we'd add */
	if (sds->max_load * sds->busiest->cpu_power <
	if (sds->max_load * sds->busiest->cpu_power <
		sds->busiest_load_per_task * SCHED_LOAD_SCALE)
		sds->busiest_load_per_task * SCHED_POWER_SCALE)
		tmp = (sds->max_load * sds->busiest->cpu_power) /
		tmp = (sds->max_load * sds->busiest->cpu_power) /
			sds->this->cpu_power;
			sds->this->cpu_power;
	else
	else
		tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
		tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
			sds->this->cpu_power;
			sds->this->cpu_power;
	pwr_move += sds->this->cpu_power *
	pwr_move += sds->this->cpu_power *
			min(sds->this_load_per_task, sds->this_load + tmp);
			min(sds->this_load_per_task, sds->this_load + tmp);
	pwr_move /= SCHED_LOAD_SCALE;
	pwr_move /= SCHED_POWER_SCALE;


	/* Move if we gain throughput */
	/* Move if we gain throughput */
	if (pwr_move > pwr_now)
	if (pwr_move > pwr_now)
@@ -3070,7 +3071,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
		load_above_capacity = (sds->busiest_nr_running -
		load_above_capacity = (sds->busiest_nr_running -
						sds->busiest_group_capacity);
						sds->busiest_group_capacity);


		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_LOAD_SCALE);
		load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);


		load_above_capacity /= sds->busiest->cpu_power;
		load_above_capacity /= sds->busiest->cpu_power;
	}
	}
@@ -3090,7 +3091,7 @@ static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
	/* How much load to actually move to equalise the imbalance */
	/* How much load to actually move to equalise the imbalance */
	*imbalance = min(max_pull * sds->busiest->cpu_power,
	*imbalance = min(max_pull * sds->busiest->cpu_power,
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
		(sds->avg_load - sds->this_load) * sds->this->cpu_power)
			/ SCHED_LOAD_SCALE;
			/ SCHED_POWER_SCALE;


	/*
	/*
	 * if *imbalance is less than the average load per runnable task
	 * if *imbalance is less than the average load per runnable task
@@ -3159,7 +3160,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,
	if (!sds.busiest || sds.busiest_nr_running == 0)
	if (!sds.busiest || sds.busiest_nr_running == 0)
		goto out_balanced;
		goto out_balanced;


	sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
	sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;


	/*
	/*
	 * If the busiest group is imbalanced the below checks don't
	 * If the busiest group is imbalanced the below checks don't
@@ -3238,7 +3239,8 @@ find_busiest_queue(struct sched_domain *sd, struct sched_group *group,


	for_each_cpu(i, sched_group_cpus(group)) {
	for_each_cpu(i, sched_group_cpus(group)) {
		unsigned long power = power_of(i);
		unsigned long power = power_of(i);
		unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
		unsigned long capacity = DIV_ROUND_CLOSEST(power,
							   SCHED_POWER_SCALE);
		unsigned long wl;
		unsigned long wl;


		if (!capacity)
		if (!capacity)
@@ -3263,7 +3265,7 @@ find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
		 * the load can be moved away from the cpu that is potentially
		 * the load can be moved away from the cpu that is potentially
		 * running at a lower capacity.
		 * running at a lower capacity.
		 */
		 */
		wl = (wl * SCHED_LOAD_SCALE) / power;
		wl = (wl * SCHED_POWER_SCALE) / power;


		if (wl > max_load) {
		if (wl > max_load) {
			max_load = wl;
			max_load = wl;