Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 66cdef66 authored by Ganesh Mahendran's avatar Ganesh Mahendran Committed by Linus Torvalds
Browse files

mm/zsmalloc: adjust order of functions



Currently functions in zsmalloc.c does not arranged in a readable and
reasonable sequence.  With the more and more functions added, we may
meet below inconvenience.  For example:

Current functions:

    void zs_init()
    {
    }

    static void get_maxobj_per_zspage()
    {
    }

Then I want to add a func_1() which is called from zs_init(), and this
new added function func_1() will used get_maxobj_per_zspage() which is
defined below zs_init().

    void func_1()
    {
        get_maxobj_per_zspage()
    }

    void zs_init()
    {
        func_1()
    }

    static void get_maxobj_per_zspage()
    {
    }

This will cause compiling issue. So we must add a declaration:

    static void get_maxobj_per_zspage();

before func_1() if we do not put get_maxobj_per_zspage() before
func_1().

In addition, puting module_[init|exit] functions at the bottom of the
file conforms to our habit.

So, this patch ajusts function sequence as:

    /* helper functions */
    ...
    obj_location_to_handle()
    ...

    /* Some exported functions */
    ...

    zs_map_object()
    zs_unmap_object()

    zs_malloc()
    zs_free()

    zs_init()
    zs_exit()

Signed-off-by: default avatarGanesh Mahendran <opensource.ganesh@gmail.com>
Cc: Nitin Gupta <ngupta@vflare.org>
Acked-by: default avatarMinchan Kim <minchan@kernel.org>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 136f49b9
Loading
Loading
Loading
Loading
+187 −187
Original line number Diff line number Diff line
@@ -884,19 +884,6 @@ static struct notifier_block zs_cpu_nb = {
	.notifier_call = zs_cpu_notifier
};

static void zs_unregister_cpu_notifier(void)
{
	int cpu;

	cpu_notifier_register_begin();

	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);

	cpu_notifier_register_done();
}

static int zs_register_cpu_notifier(void)
{
	int cpu, uninitialized_var(ret);
@@ -914,40 +901,28 @@ static int zs_register_cpu_notifier(void)
	return notifier_to_errno(ret);
}

static void init_zs_size_classes(void)
static void zs_unregister_cpu_notifier(void)
{
	int nr;
	int cpu;

	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;
	cpu_notifier_register_begin();

	zs_size_classes = nr;
}
	for_each_online_cpu(cpu)
		zs_cpu_notifier(NULL, CPU_DEAD, (void *)(long)cpu);
	__unregister_cpu_notifier(&zs_cpu_nb);

static void __exit zs_exit(void)
{
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
	cpu_notifier_register_done();
}

static int __init zs_init(void)
static void init_zs_size_classes(void)
{
	int ret = zs_register_cpu_notifier();

	if (ret) {
		zs_unregister_cpu_notifier();
		return ret;
	}
	int nr;

	init_zs_size_classes();
	nr = (ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) / ZS_SIZE_CLASS_DELTA + 1;
	if ((ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE) % ZS_SIZE_CLASS_DELTA)
		nr += 1;

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
	return 0;
	zs_size_classes = nr;
}

static unsigned int get_maxobj_per_zspage(int size, int pages_per_zspage)
@@ -967,113 +942,101 @@ static bool can_merge(struct size_class *prev, int size, int pages_per_zspage)
	return true;
}

unsigned long zs_get_total_pages(struct zs_pool *pool)
{
	return atomic_long_read(&pool->pages_allocated);
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

/**
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
 *
 * This function must be called before anything when using
 * the zsmalloc allocator.
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
 *
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 *
 * This function returns with preemption and page faults disabled.
 */
struct zs_pool *zs_create_pool(gfp_t flags)
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
{
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;

	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;

	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}
	struct page *page;
	unsigned long obj_idx, off;

	/*
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
	 */
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];

		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);
	BUG_ON(!handle);

	/*
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
	 */
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;
	BUG_ON(in_interrupt());

		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;
	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);

		prev_class = class;
	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
		return area->vm_addr + off;
	}

	pool->flags = flags;

	return pool;
	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);

err:
	zs_destroy_pool(pool);
	return NULL;
	return __zs_map_object(area, pages, off, class->size);
}
EXPORT_SYMBOL_GPL(zs_create_pool);
EXPORT_SYMBOL_GPL(zs_map_object);

void zs_destroy_pool(struct zs_pool *pool)
void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
{
	int i;
	struct page *page;
	unsigned long obj_idx, off;

	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];
	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;

		if (!class)
			continue;
	BUG_ON(!handle);

		if (class->index != i)
			continue;
	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);

		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}
	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];

	kfree(pool->size_class);
	kfree(pool);
		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);

		__zs_unmap_object(area, pages, off, class->size);
	}
EXPORT_SYMBOL_GPL(zs_destroy_pool);
	put_cpu_var(zs_map_area);
}
EXPORT_SYMBOL_GPL(zs_unmap_object);

/**
 * zs_malloc - Allocate block of given size from pool.
@@ -1176,100 +1139,137 @@ void zs_free(struct zs_pool *pool, unsigned long obj)
EXPORT_SYMBOL_GPL(zs_free);

/**
 * zs_map_object - get address of allocated object from handle.
 * @pool: pool from which the object was allocated
 * @handle: handle returned from zs_malloc
 *
 * Before using an object allocated from zs_malloc, it must be mapped using
 * this function. When done with the object, it must be unmapped using
 * zs_unmap_object.
 * zs_create_pool - Creates an allocation pool to work from.
 * @flags: allocation flags used to allocate pool metadata
 *
 * Only one object can be mapped per cpu at a time. There is no protection
 * against nested mappings.
 * This function must be called before anything when using
 * the zsmalloc allocator.
 *
 * This function returns with preemption and page faults disabled.
 * On success, a pointer to the newly created pool is returned,
 * otherwise NULL.
 */
void *zs_map_object(struct zs_pool *pool, unsigned long handle,
			enum zs_mapmode mm)
struct zs_pool *zs_create_pool(gfp_t flags)
{
	struct page *page;
	unsigned long obj_idx, off;
	int i;
	struct zs_pool *pool;
	struct size_class *prev_class = NULL;

	unsigned int class_idx;
	enum fullness_group fg;
	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
	if (!pool)
		return NULL;

	pool->size_class = kcalloc(zs_size_classes, sizeof(struct size_class *),
			GFP_KERNEL);
	if (!pool->size_class) {
		kfree(pool);
		return NULL;
	}

	/*
	 * Iterate reversly, because, size of size_class that we want to use
	 * for merging should be larger or equal to current size.
	 */
	for (i = zs_size_classes - 1; i >= 0; i--) {
		int size;
		int pages_per_zspage;
		struct size_class *class;
	struct mapping_area *area;
	struct page *pages[2];

	BUG_ON(!handle);
		size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
		if (size > ZS_MAX_ALLOC_SIZE)
			size = ZS_MAX_ALLOC_SIZE;
		pages_per_zspage = get_pages_per_zspage(size);

		/*
	 * Because we use per-cpu mapping areas shared among the
	 * pools/users, we can't allow mapping in interrupt context
	 * because it can corrupt another users mappings.
		 * size_class is used for normal zsmalloc operation such
		 * as alloc/free for that size. Although it is natural that we
		 * have one size_class for each size, there is a chance that we
		 * can get more memory utilization if we use one size_class for
		 * many different sizes whose size_class have same
		 * characteristics. So, we makes size_class point to
		 * previous size_class if possible.
		 */
	BUG_ON(in_interrupt());
		if (prev_class) {
			if (can_merge(prev_class, size, pages_per_zspage)) {
				pool->size_class[i] = prev_class;
				continue;
			}
		}

	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
		class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
		if (!class)
			goto err;

	area = &get_cpu_var(zs_map_area);
	area->vm_mm = mm;
	if (off + class->size <= PAGE_SIZE) {
		/* this object is contained entirely within a page */
		area->vm_addr = kmap_atomic(page);
		return area->vm_addr + off;
		class->size = size;
		class->index = i;
		class->pages_per_zspage = pages_per_zspage;
		spin_lock_init(&class->lock);
		pool->size_class[i] = class;

		prev_class = class;
	}

	/* this object spans two pages */
	pages[0] = page;
	pages[1] = get_next_page(page);
	BUG_ON(!pages[1]);
	pool->flags = flags;

	return __zs_map_object(area, pages, off, class->size);
	return pool;

err:
	zs_destroy_pool(pool);
	return NULL;
}
EXPORT_SYMBOL_GPL(zs_map_object);
EXPORT_SYMBOL_GPL(zs_create_pool);

void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
void zs_destroy_pool(struct zs_pool *pool)
{
	struct page *page;
	unsigned long obj_idx, off;
	int i;

	unsigned int class_idx;
	enum fullness_group fg;
	struct size_class *class;
	struct mapping_area *area;
	for (i = 0; i < zs_size_classes; i++) {
		int fg;
		struct size_class *class = pool->size_class[i];

	BUG_ON(!handle);
		if (!class)
			continue;

	obj_handle_to_location(handle, &page, &obj_idx);
	get_zspage_mapping(get_first_page(page), &class_idx, &fg);
	class = pool->size_class[class_idx];
	off = obj_idx_to_offset(page, obj_idx, class->size);
		if (class->index != i)
			continue;

	area = this_cpu_ptr(&zs_map_area);
	if (off + class->size <= PAGE_SIZE)
		kunmap_atomic(area->vm_addr);
	else {
		struct page *pages[2];
		for (fg = 0; fg < _ZS_NR_FULLNESS_GROUPS; fg++) {
			if (class->fullness_list[fg]) {
				pr_info("Freeing non-empty class with size %db, fullness group %d\n",
					class->size, fg);
			}
		}
		kfree(class);
	}

		pages[0] = page;
		pages[1] = get_next_page(page);
		BUG_ON(!pages[1]);
	kfree(pool->size_class);
	kfree(pool);
}
EXPORT_SYMBOL_GPL(zs_destroy_pool);

		__zs_unmap_object(area, pages, off, class->size);
static int __init zs_init(void)
{
	int ret = zs_register_cpu_notifier();

	if (ret) {
		zs_unregister_cpu_notifier();
		return ret;
	}
	put_cpu_var(zs_map_area);

	init_zs_size_classes();

#ifdef CONFIG_ZPOOL
	zpool_register_driver(&zs_zpool_driver);
#endif
	return 0;
}
EXPORT_SYMBOL_GPL(zs_unmap_object);

unsigned long zs_get_total_pages(struct zs_pool *pool)
static void __exit zs_exit(void)
{
	return atomic_long_read(&pool->pages_allocated);
#ifdef CONFIG_ZPOOL
	zpool_unregister_driver(&zs_zpool_driver);
#endif
	zs_unregister_cpu_notifier();
}
EXPORT_SYMBOL_GPL(zs_get_total_pages);

module_init(zs_init);
module_exit(zs_exit);