Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 14577beb authored by Linus Torvalds's avatar Linus Torvalds
Browse files
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg/slab-2.6:
  slub: Dont define useless label in the !CONFIG_CMPXCHG_LOCAL case
  slab,rcu: don't assume the size of struct rcu_head
  slub,rcu: don't assume the size of struct rcu_head
  slub: automatically reserve bytes at the end of slab
  Lockless (and preemptless) fastpaths for slub
  slub: Get rid of slab_free_hook_irq()
  slub: min_partial needs to be in first cacheline
  slub: fix ksize() build error
  slub: fix kmemcheck calls to match ksize() hints
  Revert "slab: Fix missing DEBUG_SLAB last user"
  mm: Remove support for kmem_cache_name()
parents 09b9cc44 e8c500c2
Loading
Loading
Loading
Loading
+0 −1
Original line number Diff line number Diff line
@@ -105,7 +105,6 @@ void kmem_cache_destroy(struct kmem_cache *);
int kmem_cache_shrink(struct kmem_cache *);
void kmem_cache_free(struct kmem_cache *, void *);
unsigned int kmem_cache_size(struct kmem_cache *);
const char *kmem_cache_name(struct kmem_cache *);

/*
 * Please use this macro to create slab caches. Simply specify the
+6 −2
Original line number Diff line number Diff line
@@ -35,7 +35,10 @@ enum stat_item {
	NR_SLUB_STAT_ITEMS };

struct kmem_cache_cpu {
	void **freelist;	/* Pointer to first free per cpu object */
	void **freelist;	/* Pointer to next available object */
#ifdef CONFIG_CMPXCHG_LOCAL
	unsigned long tid;	/* Globally unique transaction id */
#endif
	struct page *page;	/* The slab from which we are allocating */
	int node;		/* The node of the page (or -1 for debug) */
#ifdef CONFIG_SLUB_STATS
@@ -70,6 +73,7 @@ struct kmem_cache {
	struct kmem_cache_cpu __percpu *cpu_slab;
	/* Used for retriving partial slabs etc */
	unsigned long flags;
	unsigned long min_partial;
	int size;		/* The size of an object including meta data */
	int objsize;		/* The size of an object without meta data */
	int offset;		/* Free pointer offset. */
@@ -83,7 +87,7 @@ struct kmem_cache {
	void (*ctor)(void *);
	int inuse;		/* Offset to metadata */
	int align;		/* Alignment */
	unsigned long min_partial;
	int reserved;		/* Reserved bytes at the end of slabs */
	const char *name;	/* Name (only for display!) */
	struct list_head list;	/* List of slab caches */
#ifdef CONFIG_SYSFS
+25 −30
Original line number Diff line number Diff line
@@ -190,22 +190,6 @@ typedef unsigned int kmem_bufctl_t;
#define	BUFCTL_ACTIVE	(((kmem_bufctl_t)(~0U))-2)
#define	SLAB_LIMIT	(((kmem_bufctl_t)(~0U))-3)

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	struct list_head list;
	unsigned long colouroff;
	void *s_mem;		/* including colour offset */
	unsigned int inuse;	/* num of objs active in slab */
	kmem_bufctl_t free;
	unsigned short nodeid;
};

/*
 * struct slab_rcu
 *
@@ -219,8 +203,6 @@ struct slab {
 *
 * rcu_read_lock before reading the address, then rcu_read_unlock after
 * taking the spinlock within the structure expected at that address.
 *
 * We assume struct slab_rcu can overlay struct slab when destroying.
 */
struct slab_rcu {
	struct rcu_head head;
@@ -228,6 +210,27 @@ struct slab_rcu {
	void *addr;
};

/*
 * struct slab
 *
 * Manages the objs in a slab. Placed either at the beginning of mem allocated
 * for a slab, or allocated from an general cache.
 * Slabs are chained into three list: fully used, partial, fully free slabs.
 */
struct slab {
	union {
		struct {
			struct list_head list;
			unsigned long colouroff;
			void *s_mem;		/* including colour offset */
			unsigned int inuse;	/* num of objs active in slab */
			kmem_bufctl_t free;
			unsigned short nodeid;
		};
		struct slab_rcu __slab_cover_slab_rcu;
	};
};

/*
 * struct array_cache
 *
@@ -2147,8 +2150,6 @@ static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
 *
 * @name must be valid until the cache is destroyed. This implies that
 * the module calling this has to destroy the cache before getting unloaded.
 * Note that kmem_cache_name() is not guaranteed to return the same pointer,
 * therefore applications must manage it themselves.
 *
 * The flags are
 *
@@ -2288,8 +2289,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
	if (ralign < align) {
		ralign = align;
	}
	/* disable debug if not aligning with REDZONE_ALIGN */
	if (ralign & (__alignof__(unsigned long long) - 1))
	/* disable debug if necessary */
	if (ralign > __alignof__(unsigned long long))
		flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
	/*
	 * 4) Store it.
@@ -2315,8 +2316,8 @@ kmem_cache_create (const char *name, size_t size, size_t align,
	 */
	if (flags & SLAB_RED_ZONE) {
		/* add space for red zone words */
		cachep->obj_offset += align;
		size += align + sizeof(unsigned long long);
		cachep->obj_offset += sizeof(unsigned long long);
		size += 2 * sizeof(unsigned long long);
	}
	if (flags & SLAB_STORE_USER) {
		/* user store requires one word storage behind the end of
@@ -3840,12 +3841,6 @@ unsigned int kmem_cache_size(struct kmem_cache *cachep)
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *cachep)
{
	return cachep->name;
}
EXPORT_SYMBOL_GPL(kmem_cache_name);

/*
 * This initializes kmem_list3 or resizes various caches for all nodes.
 */
+0 −6
Original line number Diff line number Diff line
@@ -666,12 +666,6 @@ unsigned int kmem_cache_size(struct kmem_cache *c)
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *c)
{
	return c->name;
}
EXPORT_SYMBOL(kmem_cache_name);

int kmem_cache_shrink(struct kmem_cache *d)
{
	return 0;
+302 −64
Original line number Diff line number Diff line
@@ -281,11 +281,40 @@ static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
	return (p - addr) / s->size;
}

static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
}

static inline int order_objects(int order, unsigned long size, int reserved)
{
	return ((PAGE_SIZE << order) - reserved) / size;
}

static inline struct kmem_cache_order_objects oo_make(int order,
						unsigned long size)
		unsigned long size, int reserved)
{
	struct kmem_cache_order_objects x = {
		(order << OO_SHIFT) + (PAGE_SIZE << order) / size
		(order << OO_SHIFT) + order_objects(order, size, reserved)
	};

	return x;
@@ -617,7 +646,7 @@ static int slab_pad_check(struct kmem_cache *s, struct page *page)
		return 1;

	start = page_address(page);
	length = (PAGE_SIZE << compound_order(page));
	length = (PAGE_SIZE << compound_order(page)) - s->reserved;
	end = start + length;
	remainder = length % s->size;
	if (!remainder)
@@ -698,7 +727,7 @@ static int check_slab(struct kmem_cache *s, struct page *page)
		return 0;
	}

	maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
	maxobj = order_objects(compound_order(page), s->size, s->reserved);
	if (page->objects > maxobj) {
		slab_err(s, page, "objects %u > max %u",
			s->name, page->objects, maxobj);
@@ -748,7 +777,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
		nr++;
	}

	max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
	max_objects = order_objects(compound_order(page), s->size, s->reserved);
	if (max_objects > MAX_OBJS_PER_PAGE)
		max_objects = MAX_OBJS_PER_PAGE;

@@ -800,21 +829,31 @@ static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
{
	flags &= gfp_allowed_mask;
	kmemcheck_slab_alloc(s, flags, object, s->objsize);
	kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
	kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
}

static inline void slab_free_hook(struct kmem_cache *s, void *x)
{
	kmemleak_free_recursive(x, s->flags);
}

static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
	/*
	 * Trouble is that we may no longer disable interupts in the fast path
	 * So in order to make the debug calls that expect irqs to be
	 * disabled we need to disable interrupts temporarily.
	 */
#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
	{
	kmemcheck_slab_free(s, object, s->objsize);
	debug_check_no_locks_freed(object, s->objsize);
		unsigned long flags;

		local_irq_save(flags);
		kmemcheck_slab_free(s, x, s->objsize);
		debug_check_no_locks_freed(x, s->objsize);
		if (!(s->flags & SLAB_DEBUG_OBJECTS))
		debug_check_no_obj_freed(object, s->objsize);
			debug_check_no_obj_freed(x, s->objsize);
		local_irq_restore(flags);
	}
#endif
}

/*
@@ -1101,9 +1140,6 @@ static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,

static inline void slab_free_hook(struct kmem_cache *s, void *x) {}

static inline void slab_free_hook_irq(struct kmem_cache *s,
		void *object) {}

#endif /* CONFIG_SLUB_DEBUG */

/*
@@ -1249,21 +1285,38 @@ static void __free_slab(struct kmem_cache *s, struct page *page)
	__free_pages(page, order);
}

#define need_reserve_slab_rcu						\
	(sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))

static void rcu_free_slab(struct rcu_head *h)
{
	struct page *page;

	if (need_reserve_slab_rcu)
		page = virt_to_head_page(h);
	else
		page = container_of((struct list_head *)h, struct page, lru);

	__free_slab(page->slab, page);
}

static void free_slab(struct kmem_cache *s, struct page *page)
{
	if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
		struct rcu_head *head;

		if (need_reserve_slab_rcu) {
			int order = compound_order(page);
			int offset = (PAGE_SIZE << order) - s->reserved;

			VM_BUG_ON(s->reserved != sizeof(*head));
			head = page_address(page) + offset;
		} else {
			/*
			 * RCU free overloads the RCU head over the LRU
			 */
		struct rcu_head *head = (void *)&page->lru;
			head = (void *)&page->lru;
		}

		call_rcu(head, rcu_free_slab);
	} else
@@ -1487,6 +1540,77 @@ static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
	}
}

#ifdef CONFIG_CMPXCHG_LOCAL
#ifdef CONFIG_PREEMPT
/*
 * Calculate the next globally unique transaction for disambiguiation
 * during cmpxchg. The transactions start with the cpu number and are then
 * incremented by CONFIG_NR_CPUS.
 */
#define TID_STEP  roundup_pow_of_two(CONFIG_NR_CPUS)
#else
/*
 * No preemption supported therefore also no need to check for
 * different cpus.
 */
#define TID_STEP 1
#endif

static inline unsigned long next_tid(unsigned long tid)
{
	return tid + TID_STEP;
}

static inline unsigned int tid_to_cpu(unsigned long tid)
{
	return tid % TID_STEP;
}

static inline unsigned long tid_to_event(unsigned long tid)
{
	return tid / TID_STEP;
}

static inline unsigned int init_tid(int cpu)
{
	return cpu;
}

static inline void note_cmpxchg_failure(const char *n,
		const struct kmem_cache *s, unsigned long tid)
{
#ifdef SLUB_DEBUG_CMPXCHG
	unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);

	printk(KERN_INFO "%s %s: cmpxchg redo ", n, s->name);

#ifdef CONFIG_PREEMPT
	if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
		printk("due to cpu change %d -> %d\n",
			tid_to_cpu(tid), tid_to_cpu(actual_tid));
	else
#endif
	if (tid_to_event(tid) != tid_to_event(actual_tid))
		printk("due to cpu running other code. Event %ld->%ld\n",
			tid_to_event(tid), tid_to_event(actual_tid));
	else
		printk("for unknown reason: actual=%lx was=%lx target=%lx\n",
			actual_tid, tid, next_tid(tid));
#endif
}

#endif

void init_kmem_cache_cpus(struct kmem_cache *s)
{
#if defined(CONFIG_CMPXCHG_LOCAL) && defined(CONFIG_PREEMPT)
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
#endif

}
/*
 * Remove the cpu slab
 */
@@ -1518,6 +1642,9 @@ static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
		page->inuse--;
	}
	c->page = NULL;
#ifdef CONFIG_CMPXCHG_LOCAL
	c->tid = next_tid(c->tid);
#endif
	unfreeze_slab(s, page, tail);
}

@@ -1652,6 +1779,19 @@ static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
{
	void **object;
	struct page *new;
#ifdef CONFIG_CMPXCHG_LOCAL
	unsigned long flags;

	local_irq_save(flags);
#ifdef CONFIG_PREEMPT
	/*
	 * We may have been preempted and rescheduled on a different
	 * cpu before disabling interrupts. Need to reload cpu area
	 * pointer.
	 */
	c = this_cpu_ptr(s->cpu_slab);
#endif
#endif

	/* We handle __GFP_ZERO in the caller */
	gfpflags &= ~__GFP_ZERO;
@@ -1678,6 +1818,10 @@ load_freelist:
	c->node = page_to_nid(c->page);
unlock_out:
	slab_unlock(c->page);
#ifdef CONFIG_CMPXCHG_LOCAL
	c->tid = next_tid(c->tid);
	local_irq_restore(flags);
#endif
	stat(s, ALLOC_SLOWPATH);
	return object;

@@ -1739,23 +1883,76 @@ static __always_inline void *slab_alloc(struct kmem_cache *s,
{
	void **object;
	struct kmem_cache_cpu *c;
#ifdef CONFIG_CMPXCHG_LOCAL
	unsigned long tid;
#else
	unsigned long flags;
#endif

	if (slab_pre_alloc_hook(s, gfpflags))
		return NULL;

#ifndef CONFIG_CMPXCHG_LOCAL
	local_irq_save(flags);
#else
redo:
#endif

	/*
	 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
	 * enabled. We may switch back and forth between cpus while
	 * reading from one cpu area. That does not matter as long
	 * as we end up on the original cpu again when doing the cmpxchg.
	 */
	c = __this_cpu_ptr(s->cpu_slab);

#ifdef CONFIG_CMPXCHG_LOCAL
	/*
	 * The transaction ids are globally unique per cpu and per operation on
	 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
	 * occurs on the right processor and that there was no operation on the
	 * linked list in between.
	 */
	tid = c->tid;
	barrier();
#endif

	object = c->freelist;
	if (unlikely(!object || !node_match(c, node)))

		object = __slab_alloc(s, gfpflags, node, addr, c);

	else {
#ifdef CONFIG_CMPXCHG_LOCAL
		/*
		 * The cmpxchg will only match if there was no additonal
		 * operation and if we are on the right processor.
		 *
		 * The cmpxchg does the following atomically (without lock semantics!)
		 * 1. Relocate first pointer to the current per cpu area.
		 * 2. Verify that tid and freelist have not been changed
		 * 3. If they were not changed replace tid and freelist
		 *
		 * Since this is without lock semantics the protection is only against
		 * code executing on this cpu *not* from access by other cpus.
		 */
		if (unlikely(!this_cpu_cmpxchg_double(
				s->cpu_slab->freelist, s->cpu_slab->tid,
				object, tid,
				get_freepointer(s, object), next_tid(tid)))) {

			note_cmpxchg_failure("slab_alloc", s, tid);
			goto redo;
		}
#else
		c->freelist = get_freepointer(s, object);
#endif
		stat(s, ALLOC_FASTPATH);
	}

#ifndef CONFIG_CMPXCHG_LOCAL
	local_irq_restore(flags);
#endif

	if (unlikely(gfpflags & __GFP_ZERO) && object)
		memset(object, 0, s->objsize);
@@ -1833,9 +2030,13 @@ static void __slab_free(struct kmem_cache *s, struct page *page,
{
	void *prior;
	void **object = (void *)x;
#ifdef CONFIG_CMPXCHG_LOCAL
	unsigned long flags;

	stat(s, FREE_SLOWPATH);
	local_irq_save(flags);
#endif
	slab_lock(page);
	stat(s, FREE_SLOWPATH);

	if (kmem_cache_debug(s))
		goto debug;
@@ -1865,6 +2066,9 @@ checks_ok:

out_unlock:
	slab_unlock(page);
#ifdef CONFIG_CMPXCHG_LOCAL
	local_irq_restore(flags);
#endif
	return;

slab_empty:
@@ -1876,6 +2080,9 @@ slab_empty:
		stat(s, FREE_REMOVE_PARTIAL);
	}
	slab_unlock(page);
#ifdef CONFIG_CMPXCHG_LOCAL
	local_irq_restore(flags);
#endif
	stat(s, FREE_SLAB);
	discard_slab(s, page);
	return;
@@ -1902,23 +2109,56 @@ static __always_inline void slab_free(struct kmem_cache *s,
{
	void **object = (void *)x;
	struct kmem_cache_cpu *c;
#ifdef CONFIG_CMPXCHG_LOCAL
	unsigned long tid;
#else
	unsigned long flags;
#endif

	slab_free_hook(s, x);

#ifndef CONFIG_CMPXCHG_LOCAL
	local_irq_save(flags);

#else
redo:
#endif

	/*
	 * Determine the currently cpus per cpu slab.
	 * The cpu may change afterward. However that does not matter since
	 * data is retrieved via this pointer. If we are on the same cpu
	 * during the cmpxchg then the free will succedd.
	 */
	c = __this_cpu_ptr(s->cpu_slab);

	slab_free_hook_irq(s, x);
#ifdef CONFIG_CMPXCHG_LOCAL
	tid = c->tid;
	barrier();
#endif

	if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
		set_freepointer(s, object, c->freelist);

#ifdef CONFIG_CMPXCHG_LOCAL
		if (unlikely(!this_cpu_cmpxchg_double(
				s->cpu_slab->freelist, s->cpu_slab->tid,
				c->freelist, tid,
				object, next_tid(tid)))) {

			note_cmpxchg_failure("slab_free", s, tid);
			goto redo;
		}
#else
		c->freelist = object;
#endif
		stat(s, FREE_FASTPATH);
	} else
		__slab_free(s, page, x, addr);

#ifndef CONFIG_CMPXCHG_LOCAL
	local_irq_restore(flags);
#endif
}

void kmem_cache_free(struct kmem_cache *s, void *x)
@@ -1988,13 +2228,13 @@ static int slub_nomerge;
 * the smallest order which will fit the object.
 */
static inline int slab_order(int size, int min_objects,
				int max_order, int fract_leftover)
				int max_order, int fract_leftover, int reserved)
{
	int order;
	int rem;
	int min_order = slub_min_order;

	if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
	if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
		return get_order(size * MAX_OBJS_PER_PAGE) - 1;

	for (order = max(min_order,
@@ -2003,10 +2243,10 @@ static inline int slab_order(int size, int min_objects,

		unsigned long slab_size = PAGE_SIZE << order;

		if (slab_size < min_objects * size)
		if (slab_size < min_objects * size + reserved)
			continue;

		rem = slab_size % size;
		rem = (slab_size - reserved) % size;

		if (rem <= slab_size / fract_leftover)
			break;
@@ -2016,7 +2256,7 @@ static inline int slab_order(int size, int min_objects,
	return order;
}

static inline int calculate_order(int size)
static inline int calculate_order(int size, int reserved)
{
	int order;
	int min_objects;
@@ -2034,14 +2274,14 @@ static inline int calculate_order(int size)
	min_objects = slub_min_objects;
	if (!min_objects)
		min_objects = 4 * (fls(nr_cpu_ids) + 1);
	max_objects = (PAGE_SIZE << slub_max_order)/size;
	max_objects = order_objects(slub_max_order, size, reserved);
	min_objects = min(min_objects, max_objects);

	while (min_objects > 1) {
		fraction = 16;
		while (fraction >= 4) {
			order = slab_order(size, min_objects,
						slub_max_order, fraction);
					slub_max_order, fraction, reserved);
			if (order <= slub_max_order)
				return order;
			fraction /= 2;
@@ -2053,14 +2293,14 @@ static inline int calculate_order(int size)
	 * We were unable to place multiple objects in a slab. Now
	 * lets see if we can place a single object there.
	 */
	order = slab_order(size, 1, slub_max_order, 1);
	order = slab_order(size, 1, slub_max_order, 1, reserved);
	if (order <= slub_max_order)
		return order;

	/*
	 * Doh this slab cannot be placed using slub_max_order.
	 */
	order = slab_order(size, 1, MAX_ORDER, 1);
	order = slab_order(size, 1, MAX_ORDER, 1, reserved);
	if (order < MAX_ORDER)
		return order;
	return -ENOSYS;
@@ -2110,9 +2350,23 @@ static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
	BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
			SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));

#ifdef CONFIG_CMPXCHG_LOCAL
	/*
	 * Must align to double word boundary for the double cmpxchg instructions
	 * to work.
	 */
	s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), 2 * sizeof(void *));
#else
	/* Regular alignment is sufficient */
	s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
#endif

	return s->cpu_slab != NULL;
	if (!s->cpu_slab)
		return 0;

	init_kmem_cache_cpus(s);

	return 1;
}

static struct kmem_cache *kmem_cache_node;
@@ -2311,7 +2565,7 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
	if (forced_order >= 0)
		order = forced_order;
	else
		order = calculate_order(size);
		order = calculate_order(size, s->reserved);

	if (order < 0)
		return 0;
@@ -2329,8 +2583,8 @@ static int calculate_sizes(struct kmem_cache *s, int forced_order)
	/*
	 * Determine the number of objects per slab
	 */
	s->oo = oo_make(order, size);
	s->min = oo_make(get_order(size), size);
	s->oo = oo_make(order, size, s->reserved);
	s->min = oo_make(get_order(size), size, s->reserved);
	if (oo_objects(s->oo) > oo_objects(s->max))
		s->max = s->oo;

@@ -2349,6 +2603,10 @@ static int kmem_cache_open(struct kmem_cache *s,
	s->objsize = size;
	s->align = align;
	s->flags = kmem_cache_flags(size, flags, name, ctor);
	s->reserved = 0;

	if (need_reserve_slab_rcu && (s->flags & SLAB_DESTROY_BY_RCU))
		s->reserved = sizeof(struct rcu_head);

	if (!calculate_sizes(s, -1))
		goto error;
@@ -2399,12 +2657,6 @@ unsigned int kmem_cache_size(struct kmem_cache *s)
}
EXPORT_SYMBOL(kmem_cache_size);

const char *kmem_cache_name(struct kmem_cache *s)
{
	return s->name;
}
EXPORT_SYMBOL(kmem_cache_name);

static void list_slab_objects(struct kmem_cache *s, struct page *page,
							const char *text)
{
@@ -2696,7 +2948,6 @@ EXPORT_SYMBOL(__kmalloc_node);
size_t ksize(const void *object)
{
	struct page *page;
	struct kmem_cache *s;

	if (unlikely(object == ZERO_SIZE_PTR))
		return 0;
@@ -2707,28 +2958,8 @@ size_t ksize(const void *object)
		WARN_ON(!PageCompound(page));
		return PAGE_SIZE << compound_order(page);
	}
	s = page->slab;

#ifdef CONFIG_SLUB_DEBUG
	/*
	 * Debugging requires use of the padding between object
	 * and whatever may come after it.
	 */
	if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
		return s->objsize;

#endif
	/*
	 * If we have the need to store the freelist pointer
	 * back there or track user information then we can
	 * only use the space before that information.
	 */
	if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
		return s->inuse;
	/*
	 * Else we can use all the padding etc for the allocation
	 */
	return s->size;
	return slab_ksize(page->slab);
}
EXPORT_SYMBOL(ksize);

@@ -4017,6 +4248,12 @@ static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
}
SLAB_ATTR_RO(destroy_by_rcu);

static ssize_t reserved_show(struct kmem_cache *s, char *buf)
{
	return sprintf(buf, "%d\n", s->reserved);
}
SLAB_ATTR_RO(reserved);

#ifdef CONFIG_SLUB_DEBUG
static ssize_t slabs_show(struct kmem_cache *s, char *buf)
{
@@ -4303,6 +4540,7 @@ static struct attribute *slab_attrs[] = {
	&reclaim_account_attr.attr,
	&destroy_by_rcu_attr.attr,
	&shrink_attr.attr,
	&reserved_attr.attr,
#ifdef CONFIG_SLUB_DEBUG
	&total_objects_attr.attr,
	&slabs_attr.attr,