Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit f68e556e authored by Linus Torvalds's avatar Linus Torvalds
Browse files

Make the "word-at-a-time" helper functions more commonly usable



I have a new optimized x86 "strncpy_from_user()" that will use these
same helper functions for all the same reasons the name lookup code uses
them.  This is preparation for that.

This moves them into an architecture-specific header file.  It's
architecture-specific for two reasons:

 - some of the functions are likely to want architecture-specific
   implementations.  Even if the current code happens to be "generic" in
   the sense that it should work on any little-endian machine, it's
   likely that the "multiply by a big constant and shift" implementation
   is less than optimal for an architecture that has a guaranteed fast
   bit count instruction, for example.

 - I expect that if architectures like sparc want to start playing
   around with this, we'll need to abstract out a few more details (in
   particular the actual unaligned accesses).  So we're likely to have
   more architecture-specific stuff if non-x86 architectures start using
   this.

   (and if it turns out that non-x86 architectures don't start using
   this, then having it in an architecture-specific header is still the
   right thing to do, of course)

Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent 23f347ef
Loading
Loading
Loading
Loading
+46 −0
Original line number Diff line number Diff line
#ifndef _ASM_WORD_AT_A_TIME_H
#define _ASM_WORD_AT_A_TIME_H

/*
 * This is largely generic for little-endian machines, but the
 * optimal byte mask counting is probably going to be something
 * that is architecture-specific. If you have a reliably fast
 * bit count instruction, that might be better than the multiply
 * and shift, for example.
 */

#ifdef CONFIG_64BIT

/*
 * Jan Achrenius on G+: microoptimized version of
 * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56"
 * that works for the bytemasks without having to
 * mask them first.
 */
static inline long count_masked_bytes(unsigned long mask)
{
	return mask*0x0001020304050608ul >> 56;
}

#else	/* 32-bit case */

/* Carl Chatfield / Jan Achrenius G+ version for 32-bit */
static inline long count_masked_bytes(long mask)
{
	/* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */
	long a = (0x0ff0001+mask) >> 23;
	/* Fix the 1 for 00 case */
	return a & mask;
}

#endif

#define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))

/* Return the high bit set in the first byte that is a zero */
static inline unsigned long has_zero(unsigned long a)
{
	return ((a - REPEAT_BYTE(0x01)) & ~a) & REPEAT_BYTE(0x80);
}

#endif /* _ASM_WORD_AT_A_TIME_H */
+3 −32
Original line number Diff line number Diff line
@@ -1407,18 +1407,9 @@ static inline int can_lookup(struct inode *inode)
 */
#ifdef CONFIG_DCACHE_WORD_ACCESS

#ifdef CONFIG_64BIT
#include <asm/word-at-a-time.h>

/*
 * Jan Achrenius on G+: microoptimized version of
 * the simpler "(mask & ONEBYTES) * ONEBYTES >> 56"
 * that works for the bytemasks without having to
 * mask them first.
 */
static inline long count_masked_bytes(unsigned long mask)
{
	return mask*0x0001020304050608ul >> 56;
}
#ifdef CONFIG_64BIT

static inline unsigned int fold_hash(unsigned long hash)
{
@@ -1428,15 +1419,6 @@ static inline unsigned int fold_hash(unsigned long hash)

#else	/* 32-bit case */

/* Carl Chatfield / Jan Achrenius G+ version for 32-bit */
static inline long count_masked_bytes(long mask)
{
	/* (000000 0000ff 00ffff ffffff) -> ( 1 1 2 3 ) */
	long a = (0x0ff0001+mask) >> 23;
	/* Fix the 1 for 00 case */
	return a & mask;
}

#define fold_hash(x) (x)

#endif
@@ -1464,17 +1446,6 @@ done:
}
EXPORT_SYMBOL(full_name_hash);

#define REPEAT_BYTE(x)	((~0ul / 0xff) * (x))
#define ONEBYTES	REPEAT_BYTE(0x01)
#define SLASHBYTES	REPEAT_BYTE('/')
#define HIGHBITS	REPEAT_BYTE(0x80)

/* Return the high bit set in the first byte that is a zero */
static inline unsigned long has_zero(unsigned long a)
{
	return ((a - ONEBYTES) & ~a) & HIGHBITS;
}

/*
 * Calculate the length and hash of the path component, and
 * return the length of the component;
@@ -1490,7 +1461,7 @@ static inline unsigned long hash_name(const char *name, unsigned int *hashp)
		len += sizeof(unsigned long);
		a = *(unsigned long *)(name+len);
		/* Do we have any NUL or '/' bytes in this word? */
		mask = has_zero(a) | has_zero(a ^ SLASHBYTES);
		mask = has_zero(a) | has_zero(a ^ REPEAT_BYTE('/'));
	} while (!mask);

	/* The mask *below* the first high bit set */