Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 9aa55fbd authored by Ingo Molnar's avatar Ingo Molnar
Browse files

Merge branches 'sched/domains' and 'sched/clock' into sched/core



Merge reason: both topics are ready now, and we want to merge dependent
              changes.

Signed-off-by: default avatarIngo Molnar <mingo@elte.hu>
Loading
Loading
Loading
Loading
+1 −1
Original line number Original line Diff line number Diff line
@@ -631,7 +631,6 @@ asmlinkage void __init start_kernel(void)
	softirq_init();
	softirq_init();
	timekeeping_init();
	timekeeping_init();
	time_init();
	time_init();
	sched_clock_init();
	profile_init();
	profile_init();
	if (!irqs_disabled())
	if (!irqs_disabled())
		printk(KERN_CRIT "start_kernel(): bug: interrupts were "
		printk(KERN_CRIT "start_kernel(): bug: interrupts were "
@@ -682,6 +681,7 @@ asmlinkage void __init start_kernel(void)
	numa_policy_init();
	numa_policy_init();
	if (late_time_init)
	if (late_time_init)
		late_time_init();
		late_time_init();
	sched_clock_init();
	calibrate_delay();
	calibrate_delay();
	pidmap_init();
	pidmap_init();
	anon_vma_init();
	anon_vma_init();
+320 −245
Original line number Original line Diff line number Diff line
@@ -8191,6 +8191,39 @@ struct static_sched_domain {
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
	DECLARE_BITMAP(span, CONFIG_NR_CPUS);
};
};


struct s_data {
#ifdef CONFIG_NUMA
	int			sd_allnodes;
	cpumask_var_t		domainspan;
	cpumask_var_t		covered;
	cpumask_var_t		notcovered;
#endif
	cpumask_var_t		nodemask;
	cpumask_var_t		this_sibling_map;
	cpumask_var_t		this_core_map;
	cpumask_var_t		send_covered;
	cpumask_var_t		tmpmask;
	struct sched_group	**sched_group_nodes;
	struct root_domain	*rd;
};

enum s_alloc {
	sa_sched_groups = 0,
	sa_rootdomain,
	sa_tmpmask,
	sa_send_covered,
	sa_this_core_map,
	sa_this_sibling_map,
	sa_nodemask,
	sa_sched_group_nodes,
#ifdef CONFIG_NUMA
	sa_notcovered,
	sa_covered,
	sa_domainspan,
#endif
	sa_none,
};

/*
/*
 * SMT sched-domains:
 * SMT sched-domains:
 */
 */
@@ -8313,6 +8346,71 @@ static void init_numa_sched_groups_power(struct sched_group *group_head)
		sg = sg->next;
		sg = sg->next;
	} while (sg != group_head);
	} while (sg != group_head);
}
}

static int build_numa_sched_groups(struct s_data *d,
				   const struct cpumask *cpu_map, int num)
{
	struct sched_domain *sd;
	struct sched_group *sg, *prev;
	int n, j;

	cpumask_clear(d->covered);
	cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
	if (cpumask_empty(d->nodemask)) {
		d->sched_group_nodes[num] = NULL;
		goto out;
	}

	sched_domain_node_span(num, d->domainspan);
	cpumask_and(d->domainspan, d->domainspan, cpu_map);

	sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
			  GFP_KERNEL, num);
	if (!sg) {
		printk(KERN_WARNING "Can not alloc domain group for node %d\n",
		       num);
		return -ENOMEM;
	}
	d->sched_group_nodes[num] = sg;

	for_each_cpu(j, d->nodemask) {
		sd = &per_cpu(node_domains, j).sd;
		sd->groups = sg;
	}

	sg->__cpu_power = 0;
	cpumask_copy(sched_group_cpus(sg), d->nodemask);
	sg->next = sg;
	cpumask_or(d->covered, d->covered, d->nodemask);

	prev = sg;
	for (j = 0; j < nr_node_ids; j++) {
		n = (num + j) % nr_node_ids;
		cpumask_complement(d->notcovered, d->covered);
		cpumask_and(d->tmpmask, d->notcovered, cpu_map);
		cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
		if (cpumask_empty(d->tmpmask))
			break;
		cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
		if (cpumask_empty(d->tmpmask))
			continue;
		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
				  GFP_KERNEL, num);
		if (!sg) {
			printk(KERN_WARNING
			       "Can not alloc domain group for node %d\n", j);
			return -ENOMEM;
		}
		sg->__cpu_power = 0;
		cpumask_copy(sched_group_cpus(sg), d->tmpmask);
		sg->next = prev->next;
		cpumask_or(d->covered, d->covered, d->tmpmask);
		prev->next = sg;
		prev = sg;
	}
out:
	return 0;
}
#endif /* CONFIG_NUMA */
#endif /* CONFIG_NUMA */


#ifdef CONFIG_NUMA
#ifdef CONFIG_NUMA
@@ -8478,280 +8576,285 @@ static void set_domain_attribute(struct sched_domain *sd,
	}
	}
}
}


/*
static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
 * Build sched domains for a given set of cpus and attach the sched domains
				 const struct cpumask *cpu_map)
 * to the individual cpus
{
 */
	switch (what) {
static int __build_sched_domains(const struct cpumask *cpu_map,
	case sa_sched_groups:
				 struct sched_domain_attr *attr)
		free_sched_groups(cpu_map, d->tmpmask); /* fall through */
{
		d->sched_group_nodes = NULL;
	int i, err = -ENOMEM;
	case sa_rootdomain:
	struct root_domain *rd;
		free_rootdomain(d->rd); /* fall through */
	cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
	case sa_tmpmask:
		tmpmask;
		free_cpumask_var(d->tmpmask); /* fall through */
	case sa_send_covered:
		free_cpumask_var(d->send_covered); /* fall through */
	case sa_this_core_map:
		free_cpumask_var(d->this_core_map); /* fall through */
	case sa_this_sibling_map:
		free_cpumask_var(d->this_sibling_map); /* fall through */
	case sa_nodemask:
		free_cpumask_var(d->nodemask); /* fall through */
	case sa_sched_group_nodes:
#ifdef CONFIG_NUMA
#ifdef CONFIG_NUMA
	cpumask_var_t domainspan, covered, notcovered;
		kfree(d->sched_group_nodes); /* fall through */
	struct sched_group **sched_group_nodes = NULL;
	case sa_notcovered:
	int sd_allnodes = 0;
		free_cpumask_var(d->notcovered); /* fall through */

	case sa_covered:
	if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
		free_cpumask_var(d->covered); /* fall through */
		goto out;
	case sa_domainspan:
	if (!alloc_cpumask_var(&covered, GFP_KERNEL))
		free_cpumask_var(d->domainspan); /* fall through */
		goto free_domainspan;
#endif
	if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
	case sa_none:
		goto free_covered;
		break;
#endif
	}

}
	if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
		goto free_notcovered;
	if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
		goto free_nodemask;
	if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
		goto free_this_sibling_map;
	if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
		goto free_this_core_map;
	if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
		goto free_send_covered;


static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
						   const struct cpumask *cpu_map)
{
#ifdef CONFIG_NUMA
#ifdef CONFIG_NUMA
	/*
	if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
	 * Allocate the per-node list of sched groups
		return sa_none;
	 */
	if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
	sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
		return sa_domainspan;
				    GFP_KERNEL);
	if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
	if (!sched_group_nodes) {
		return sa_covered;
	/* Allocate the per-node list of sched groups */
	d->sched_group_nodes = kcalloc(nr_node_ids,
				      sizeof(struct sched_group *), GFP_KERNEL);
	if (!d->sched_group_nodes) {
		printk(KERN_WARNING "Can not alloc sched group node list\n");
		printk(KERN_WARNING "Can not alloc sched group node list\n");
		goto free_tmpmask;
		return sa_notcovered;
	}
	}
#endif
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;

#endif
	rd = alloc_rootdomain();
	if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
	if (!rd) {
		return sa_sched_group_nodes;
	if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
		return sa_nodemask;
	if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
		return sa_this_sibling_map;
	if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
		return sa_this_core_map;
	if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
		return sa_send_covered;
	d->rd = alloc_rootdomain();
	if (!d->rd) {
		printk(KERN_WARNING "Cannot alloc root domain\n");
		printk(KERN_WARNING "Cannot alloc root domain\n");
		goto free_sched_groups;
		return sa_tmpmask;
	}
	return sa_rootdomain;
}
}


static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
{
	struct sched_domain *sd = NULL;
#ifdef CONFIG_NUMA
#ifdef CONFIG_NUMA
	sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
	struct sched_domain *parent;
#endif


	/*
	d->sd_allnodes = 0;
	 * Set up domains for cpus specified by the cpu_map.
	 */
	for_each_cpu(i, cpu_map) {
		struct sched_domain *sd = NULL, *p;

		cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);

#ifdef CONFIG_NUMA
	if (cpumask_weight(cpu_map) >
	if (cpumask_weight(cpu_map) >
				SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
	    SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
		sd = &per_cpu(allnodes_domains, i).sd;
		sd = &per_cpu(allnodes_domains, i).sd;
		SD_INIT(sd, ALLNODES);
		SD_INIT(sd, ALLNODES);
		set_domain_attribute(sd, attr);
		set_domain_attribute(sd, attr);
		cpumask_copy(sched_domain_span(sd), cpu_map);
		cpumask_copy(sched_domain_span(sd), cpu_map);
			cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
		cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
			p = sd;
		d->sd_allnodes = 1;
			sd_allnodes = 1;
	}
		} else
	parent = sd;
			p = NULL;


	sd = &per_cpu(node_domains, i).sd;
	sd = &per_cpu(node_domains, i).sd;
	SD_INIT(sd, NODE);
	SD_INIT(sd, NODE);
	set_domain_attribute(sd, attr);
	set_domain_attribute(sd, attr);
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
	sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
		sd->parent = p;
	sd->parent = parent;
		if (p)
	if (parent)
			p->child = sd;
		parent->child = sd;
		cpumask_and(sched_domain_span(sd),
	cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
			    sched_domain_span(sd), cpu_map);
#endif
#endif
	return sd;
}


		p = sd;
static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd;
	sd = &per_cpu(phys_domains, i).sd;
	sd = &per_cpu(phys_domains, i).sd;
	SD_INIT(sd, CPU);
	SD_INIT(sd, CPU);
	set_domain_attribute(sd, attr);
	set_domain_attribute(sd, attr);
		cpumask_copy(sched_domain_span(sd), nodemask);
	cpumask_copy(sched_domain_span(sd), d->nodemask);
		sd->parent = p;
	sd->parent = parent;
		if (p)
	if (parent)
			p->child = sd;
		parent->child = sd;
		cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
	cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
	return sd;
}


static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_MC
#ifdef CONFIG_SCHED_MC
		p = sd;
	sd = &per_cpu(core_domains, i).sd;
	sd = &per_cpu(core_domains, i).sd;
	SD_INIT(sd, MC);
	SD_INIT(sd, MC);
	set_domain_attribute(sd, attr);
	set_domain_attribute(sd, attr);
		cpumask_and(sched_domain_span(sd), cpu_map,
	cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
						   cpu_coregroup_mask(i));
	sd->parent = parent;
		sd->parent = p;
	parent->child = sd;
		p->child = sd;
	cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
		cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
#endif
#endif
	return sd;
}


static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
	const struct cpumask *cpu_map, struct sched_domain_attr *attr,
	struct sched_domain *parent, int i)
{
	struct sched_domain *sd = parent;
#ifdef CONFIG_SCHED_SMT
#ifdef CONFIG_SCHED_SMT
		p = sd;
	sd = &per_cpu(cpu_domains, i).sd;
	sd = &per_cpu(cpu_domains, i).sd;
	SD_INIT(sd, SIBLING);
	SD_INIT(sd, SIBLING);
	set_domain_attribute(sd, attr);
	set_domain_attribute(sd, attr);
		cpumask_and(sched_domain_span(sd),
	cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
			    topology_thread_cpumask(i), cpu_map);
	sd->parent = parent;
		sd->parent = p;
	parent->child = sd;
		p->child = sd;
	cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
		cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
#endif
#endif
	return sd;
}
}


static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
			       const struct cpumask *cpu_map, int cpu)
{
	switch (l) {
#ifdef CONFIG_SCHED_SMT
#ifdef CONFIG_SCHED_SMT
	/* Set up CPU (sibling) groups */
	case SD_LV_SIBLING: /* set up CPU (sibling) groups */
	for_each_cpu(i, cpu_map) {
		cpumask_and(d->this_sibling_map, cpu_map,
		cpumask_and(this_sibling_map,
			    topology_thread_cpumask(cpu));
			    topology_thread_cpumask(i), cpu_map);
		if (cpu == cpumask_first(d->this_sibling_map))
		if (i != cpumask_first(this_sibling_map))
			init_sched_build_groups(d->this_sibling_map, cpu_map,
			continue;

		init_sched_build_groups(this_sibling_map, cpu_map,
						&cpu_to_cpu_group,
						&cpu_to_cpu_group,
					send_covered, tmpmask);
						d->send_covered, d->tmpmask);
	}
		break;
#endif
#endif

#ifdef CONFIG_SCHED_MC
#ifdef CONFIG_SCHED_MC
	/* Set up multi-core groups */
	case SD_LV_MC: /* set up multi-core groups */
	for_each_cpu(i, cpu_map) {
		cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
		cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
		if (cpu == cpumask_first(d->this_core_map))
		if (i != cpumask_first(this_core_map))
			init_sched_build_groups(d->this_core_map, cpu_map,
			continue;

		init_sched_build_groups(this_core_map, cpu_map,
						&cpu_to_core_group,
						&cpu_to_core_group,
					send_covered, tmpmask);
						d->send_covered, d->tmpmask);
	}
		break;
#endif
#endif

	case SD_LV_CPU: /* set up physical groups */
	/* Set up physical groups */
		cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
	for (i = 0; i < nr_node_ids; i++) {
		if (!cpumask_empty(d->nodemask))
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
			init_sched_build_groups(d->nodemask, cpu_map,
		if (cpumask_empty(nodemask))
			continue;

		init_sched_build_groups(nodemask, cpu_map,
						&cpu_to_phys_group,
						&cpu_to_phys_group,
					send_covered, tmpmask);
						d->send_covered, d->tmpmask);
	}
		break;

#ifdef CONFIG_NUMA
#ifdef CONFIG_NUMA
	/* Set up node groups */
	case SD_LV_ALLNODES:
	if (sd_allnodes) {
		init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
		init_sched_build_groups(cpu_map, cpu_map,
					d->send_covered, d->tmpmask);
					&cpu_to_allnodes_group,
		break;
					send_covered, tmpmask);
#endif
	default:
		break;
	}
	}

	for (i = 0; i < nr_node_ids; i++) {
		/* Set up node groups */
		struct sched_group *sg, *prev;
		int j;

		cpumask_clear(covered);
		cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
		if (cpumask_empty(nodemask)) {
			sched_group_nodes[i] = NULL;
			continue;
}
}


		sched_domain_node_span(i, domainspan);
/*
		cpumask_and(domainspan, domainspan, cpu_map);
 * Build sched domains for a given set of cpus and attach the sched domains
 * to the individual cpus
 */
static int __build_sched_domains(const struct cpumask *cpu_map,
				 struct sched_domain_attr *attr)
{
	enum s_alloc alloc_state = sa_none;
	struct s_data d;
	struct sched_domain *sd;
	int i;
#ifdef CONFIG_NUMA
	d.sd_allnodes = 0;
#endif


		sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
	alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
				  GFP_KERNEL, i);
	if (alloc_state != sa_rootdomain)
		if (!sg) {
			printk(KERN_WARNING "Can not alloc domain group for "
				"node %d\n", i);
		goto error;
		goto error;
		}
	alloc_state = sa_sched_groups;
		sched_group_nodes[i] = sg;
		for_each_cpu(j, nodemask) {
			struct sched_domain *sd;


			sd = &per_cpu(node_domains, j).sd;
	/*
			sd->groups = sg;
	 * Set up domains for cpus specified by the cpu_map.
	 */
	for_each_cpu(i, cpu_map) {
		cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
			    cpu_map);

		sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
		sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
		sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
		sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
	}
	}
		sg->__cpu_power = 0;
		cpumask_copy(sched_group_cpus(sg), nodemask);
		sg->next = sg;
		cpumask_or(covered, covered, nodemask);
		prev = sg;


		for (j = 0; j < nr_node_ids; j++) {
	for_each_cpu(i, cpu_map) {
			int n = (i + j) % nr_node_ids;
		build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
		build_sched_groups(&d, SD_LV_MC, cpu_map, i);
	}


			cpumask_complement(notcovered, covered);
	/* Set up physical groups */
			cpumask_and(tmpmask, notcovered, cpu_map);
	for (i = 0; i < nr_node_ids; i++)
			cpumask_and(tmpmask, tmpmask, domainspan);
		build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
			if (cpumask_empty(tmpmask))
				break;


			cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
#ifdef CONFIG_NUMA
			if (cpumask_empty(tmpmask))
	/* Set up node groups */
				continue;
	if (d.sd_allnodes)
		build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);


			sg = kmalloc_node(sizeof(struct sched_group) +
	for (i = 0; i < nr_node_ids; i++)
					  cpumask_size(),
		if (build_numa_sched_groups(&d, cpu_map, i))
					  GFP_KERNEL, i);
			if (!sg) {
				printk(KERN_WARNING
				"Can not alloc domain group for node %d\n", j);
			goto error;
			goto error;
			}
			sg->__cpu_power = 0;
			cpumask_copy(sched_group_cpus(sg), tmpmask);
			sg->next = prev->next;
			cpumask_or(covered, covered, tmpmask);
			prev->next = sg;
			prev = sg;
		}
	}
#endif
#endif


	/* Calculate CPU power for physical packages and nodes */
	/* Calculate CPU power for physical packages and nodes */
#ifdef CONFIG_SCHED_SMT
#ifdef CONFIG_SCHED_SMT
	for_each_cpu(i, cpu_map) {
	for_each_cpu(i, cpu_map) {
		struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
		sd = &per_cpu(cpu_domains, i).sd;

		init_sched_groups_power(i, sd);
		init_sched_groups_power(i, sd);
	}
	}
#endif
#endif
#ifdef CONFIG_SCHED_MC
#ifdef CONFIG_SCHED_MC
	for_each_cpu(i, cpu_map) {
	for_each_cpu(i, cpu_map) {
		struct sched_domain *sd = &per_cpu(core_domains, i).sd;
		sd = &per_cpu(core_domains, i).sd;

		init_sched_groups_power(i, sd);
		init_sched_groups_power(i, sd);
	}
	}
#endif
#endif


	for_each_cpu(i, cpu_map) {
	for_each_cpu(i, cpu_map) {
		struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
		sd = &per_cpu(phys_domains, i).sd;

		init_sched_groups_power(i, sd);
		init_sched_groups_power(i, sd);
	}
	}


#ifdef CONFIG_NUMA
#ifdef CONFIG_NUMA
	for (i = 0; i < nr_node_ids; i++)
	for (i = 0; i < nr_node_ids; i++)
		init_numa_sched_groups_power(sched_group_nodes[i]);
		init_numa_sched_groups_power(d.sched_group_nodes[i]);


	if (sd_allnodes) {
	if (d.sd_allnodes) {
		struct sched_group *sg;
		struct sched_group *sg;


		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
		cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
								tmpmask);
								d.tmpmask);
		init_numa_sched_groups_power(sg);
		init_numa_sched_groups_power(sg);
	}
	}
#endif
#endif


	/* Attach the domains */
	/* Attach the domains */
	for_each_cpu(i, cpu_map) {
	for_each_cpu(i, cpu_map) {
		struct sched_domain *sd;
#ifdef CONFIG_SCHED_SMT
#ifdef CONFIG_SCHED_SMT
		sd = &per_cpu(cpu_domains, i).sd;
		sd = &per_cpu(cpu_domains, i).sd;
#elif defined(CONFIG_SCHED_MC)
#elif defined(CONFIG_SCHED_MC)
@@ -8759,44 +8862,16 @@ static int __build_sched_domains(const struct cpumask *cpu_map,
#else
#else
		sd = &per_cpu(phys_domains, i).sd;
		sd = &per_cpu(phys_domains, i).sd;
#endif
#endif
		cpu_attach_domain(sd, rd, i);
		cpu_attach_domain(sd, d.rd, i);
	}
	}


	err = 0;
	d.sched_group_nodes = NULL; /* don't free this we still need it */

	__free_domain_allocs(&d, sa_tmpmask, cpu_map);
free_tmpmask:
	return 0;
	free_cpumask_var(tmpmask);
free_send_covered:
	free_cpumask_var(send_covered);
free_this_core_map:
	free_cpumask_var(this_core_map);
free_this_sibling_map:
	free_cpumask_var(this_sibling_map);
free_nodemask:
	free_cpumask_var(nodemask);
free_notcovered:
#ifdef CONFIG_NUMA
	free_cpumask_var(notcovered);
free_covered:
	free_cpumask_var(covered);
free_domainspan:
	free_cpumask_var(domainspan);
out:
#endif
	return err;

free_sched_groups:
#ifdef CONFIG_NUMA
	kfree(sched_group_nodes);
#endif
	goto free_tmpmask;


#ifdef CONFIG_NUMA
error:
error:
	free_sched_groups(cpu_map, tmpmask);
	__free_domain_allocs(&d, alloc_state, cpu_map);
	free_rootdomain(rd);
	return -ENOMEM;
	goto free_tmpmask;
#endif
}
}


static int build_sched_domains(const struct cpumask *cpu_map)
static int build_sched_domains(const struct cpumask *cpu_map)