Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit e6533d6a authored by Harry Yang's avatar Harry Yang
Browse files

mfd: add snapshot of i2c-pmic driver



Snapshot of i2c-pmic driver as of kernel 4.9
'commit fc9ce0e0a100 ("Merge changes  into msm-4.9")'.

Change-Id: I43b95c9775702899e8aeebed878d63fbe02321ba
Signed-off-by: default avatarHarry Yang <harryy@codeaurora.org>
parent f2fb0ee7
Loading
Loading
Loading
Loading
+98 −0
Original line number Diff line number Diff line
Qualcomm Technologies, Inc. I2C PMIC Interrupt Controller
Platform Independent Bindings

The I2C PMIC Controller is used by multi-function PMIC devices which communicate
over the I2C bus. An I2C PMIC controller node typically contains one or more
child nodes representing the device's peripherals. Each of the peripherals
typically has its own driver on the platform bus and will be enumerated by this
controller. The controller exposes a regmap to the peripherals to communicate
over the I2C bus.

The controller also controls interrupts for all of the peripherals on the bus.
The controller takes a summary interrupt, deciphers which peripheral triggered
the interrupt, and which of the peripheral's interrupts were triggered. Finally,
it calls the handlers for each of the virtual interrupts that were registered.

This document describes the common platform independent bindings that apply
to all I2C PMIC interrupt controllers.

========================================
First Level Nodes - I2C PMIC Controllers
========================================

Platform independent properties:
- compatible
	Usage:      required
	Value type: <string>
	Definition: Must be "qcom,i2c-pmic".

- reg
	Usage:      required
	Value type: <u32>
	Definition: 7-bit I2C address of the device.

- interrupt-parent
	Usage:      optional
	Value type: <phandle>
	Definition: phandle of the interrupt controller which services the
		    summary interrupt.

- interrupts
	Usage:      optional
	Value type: <prop-encoded-array>
	Definition: Summary interrupt specifier.

- interrupt-controller
	Usage:      optional
	Value type: <empty>
	Definition: Boolean flag which indicates this device node is an
		    interrupt controller.

- #interrupt-cells
	Usage:      optional
	Value type: <u32>
	Definition: Number of cells to encode an interrupt source.

- qcom,periph-map
	Usage:      optional
	Value type: <prop-encoded-array>
	Definition: A list of u32 arrays. This provides a mapping between the
		    summary status register bits and peripheral addresses.

		    The number of arrays should match the number of summary
		    registers with up to 8 elements each. One element per bit
		    of the summary status register in order from the least
		    sigificant bit to the most significant bit.

- pinctrl-names
	Usage:      optional
	Value type: <string-list>
	Definition: Should be "default".
		    Please refer to pinctrl-bindings.txt

- pinctrl-0
	Usage:      optional
	Value type: <phandle-list>
	Definition: phandle of the pin configuration.
		    Please refer to pinctrl-bindings.txt

=======
Example
=======

&i2c_3 {
	status = "ok";
	qcom,smb138x@8 {
		compatible = "qcom,i2c-pmic";
		reg = <0x8>;
		interrupt-parent = <&tlmm_pinmux>;
		interrupts = <83 0>;
		interrupt-controller;
		#interrupt-cells = <3>;
		pinctrl-names = "default";
		pinctrl-0 = <&smb_stat_active>;
		#address-cells = <1>;
		#size-cells = <0>;
		qcom,periph-map = <0x10 0x11 0x12 0x13 0x14 0x16 0x36>;
	};
};
+11 −0
Original line number Diff line number Diff line
@@ -878,6 +878,17 @@ config MFD_PM8XXX
	  Say M here if you want to include support for PM8xxx chips as a
	  module. This will build a module called "pm8xxx-core".

config MFD_I2C_PMIC
	tristate "QTI I2C PMIC support"
	depends on I2C && OF
	select IRQ_DOMAIN
	select REGMAP_I2C
	help
	  This enables support for controlling Qualcomm Technologies, Inc.
	  PMICs over I2C. The driver controls interrupts, and provides register
	  access for all of the device's peripherals.  Some QTI PMIC chips
	  support communication over both I2C and SPMI.

config MFD_QCOM_RPM
	tristate "Qualcomm Resource Power Manager (RPM)"
	depends on ARCH_QCOM && OF
+1 −0
Original line number Diff line number Diff line
@@ -182,6 +182,7 @@ obj-$(CONFIG_MFD_SI476X_CORE) += si476x-core.o
obj-$(CONFIG_MFD_CS5535)	+= cs5535-mfd.o
obj-$(CONFIG_MFD_OMAP_USB_HOST)	+= omap-usb-host.o omap-usb-tll.o
obj-$(CONFIG_MFD_PM8XXX) 	+= qcom-pm8xxx.o ssbi.o
obj-$(CONFIG_MFD_I2C_PMIC)	+= qcom-i2c-pmic.o
obj-$(CONFIG_MFD_QCOM_RPM)	+= qcom_rpm.o
obj-$(CONFIG_MFD_SPMI_PMIC)	+= qcom-spmi-pmic.o
obj-$(CONFIG_TPS65911_COMPARATOR)	+= tps65911-comparator.o
+745 −0
Original line number Diff line number Diff line
/* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 and
 * only version 2 as published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#define pr_fmt(fmt) "I2C PMIC: %s: " fmt, __func__

#include <linux/bitops.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/consumer.h>
#include <linux/regmap.h>
#include <linux/slab.h>

#define I2C_INTR_STATUS_BASE	0x0550
#define INT_RT_STS_OFFSET	0x10
#define INT_SET_TYPE_OFFSET	0x11
#define INT_POL_HIGH_OFFSET	0x12
#define INT_POL_LOW_OFFSET	0x13
#define INT_LATCHED_CLR_OFFSET	0x14
#define INT_EN_SET_OFFSET	0x15
#define INT_EN_CLR_OFFSET	0x16
#define INT_LATCHED_STS_OFFSET	0x18
#define INT_PENDING_STS_OFFSET	0x19
#define INT_MID_SEL_OFFSET	0x1A
#define INT_MID_SEL_MASK	GENMASK(1, 0)
#define INT_PRIORITY_OFFSET	0x1B
#define INT_PRIORITY_BIT	BIT(0)

enum {
	IRQ_SET_TYPE = 0,
	IRQ_POL_HIGH,
	IRQ_POL_LOW,
	IRQ_LATCHED_CLR, /* not needed but makes life easy */
	IRQ_EN_SET,
	IRQ_MAX_REGS,
};

struct i2c_pmic_periph {
	void		*data;
	u16		addr;
	u8		cached[IRQ_MAX_REGS];
	u8		synced[IRQ_MAX_REGS];
	u8		wake;
	struct mutex	lock;
};

struct i2c_pmic {
	struct device		*dev;
	struct regmap		*regmap;
	struct irq_domain	*domain;
	struct i2c_pmic_periph	*periph;
	struct pinctrl		*pinctrl;
	struct mutex		irq_complete;
	const char		*pinctrl_name;
	int			num_periphs;
	int			summary_irq;
	bool			resume_completed;
	bool			irq_waiting;
};

static void i2c_pmic_irq_bus_lock(struct irq_data *d)
{
	struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);

	mutex_lock(&periph->lock);
}

static void i2c_pmic_sync_type_polarity(struct i2c_pmic *chip,
			       struct i2c_pmic_periph *periph)
{
	int rc;

	/* did any irq type change? */
	if (periph->cached[IRQ_SET_TYPE] ^ periph->synced[IRQ_SET_TYPE]) {
		rc = regmap_write(chip->regmap,
				  periph->addr | INT_SET_TYPE_OFFSET,
				  periph->cached[IRQ_SET_TYPE]);
		if (rc < 0) {
			pr_err("Couldn't set periph 0x%04x irqs 0x%02x type rc=%d\n",
				periph->addr, periph->cached[IRQ_SET_TYPE], rc);
			return;
		}

		periph->synced[IRQ_SET_TYPE] = periph->cached[IRQ_SET_TYPE];
	}

	/* did any polarity high change? */
	if (periph->cached[IRQ_POL_HIGH] ^ periph->synced[IRQ_POL_HIGH]) {
		rc = regmap_write(chip->regmap,
				  periph->addr | INT_POL_HIGH_OFFSET,
				  periph->cached[IRQ_POL_HIGH]);
		if (rc < 0) {
			pr_err("Couldn't set periph 0x%04x irqs 0x%02x polarity high rc=%d\n",
				periph->addr, periph->cached[IRQ_POL_HIGH], rc);
			return;
		}

		periph->synced[IRQ_POL_HIGH] = periph->cached[IRQ_POL_HIGH];
	}

	/* did any polarity low change? */
	if (periph->cached[IRQ_POL_LOW] ^ periph->synced[IRQ_POL_LOW]) {
		rc = regmap_write(chip->regmap,
				  periph->addr | INT_POL_LOW_OFFSET,
				  periph->cached[IRQ_POL_LOW]);
		if (rc < 0) {
			pr_err("Couldn't set periph 0x%04x irqs 0x%02x polarity low rc=%d\n",
				periph->addr, periph->cached[IRQ_POL_LOW], rc);
			return;
		}

		periph->synced[IRQ_POL_LOW] = periph->cached[IRQ_POL_LOW];
	}
}

static void i2c_pmic_sync_enable(struct i2c_pmic *chip,
				 struct i2c_pmic_periph *periph)
{
	u8 en_set, en_clr;
	int rc;

	/* determine which irqs were enabled and which were disabled */
	en_clr = periph->synced[IRQ_EN_SET] & ~periph->cached[IRQ_EN_SET];
	en_set = ~periph->synced[IRQ_EN_SET] & periph->cached[IRQ_EN_SET];

	/* were any irqs disabled? */
	if (en_clr) {
		rc = regmap_write(chip->regmap,
				  periph->addr | INT_EN_CLR_OFFSET, en_clr);
		if (rc < 0) {
			pr_err("Couldn't disable periph 0x%04x irqs 0x%02x rc=%d\n",
				periph->addr, en_clr, rc);
			return;
		}
	}

	/* were any irqs enabled? */
	if (en_set) {
		rc = regmap_write(chip->regmap,
				  periph->addr | INT_EN_SET_OFFSET, en_set);
		if (rc < 0) {
			pr_err("Couldn't enable periph 0x%04x irqs 0x%02x rc=%d\n",
				periph->addr, en_set, rc);
			return;
		}
	}

	/* irq enabled status was written to hardware */
	periph->synced[IRQ_EN_SET] = periph->cached[IRQ_EN_SET];
}

static void i2c_pmic_irq_bus_sync_unlock(struct irq_data *d)
{
	struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);
	struct i2c_pmic *chip = periph->data;

	i2c_pmic_sync_type_polarity(chip, periph);
	i2c_pmic_sync_enable(chip, periph);
	mutex_unlock(&periph->lock);
}

static void i2c_pmic_irq_disable(struct irq_data *d)
{
	struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);

	periph->cached[IRQ_EN_SET] &= ~d->hwirq & 0xFF;
}

static void i2c_pmic_irq_enable(struct irq_data *d)
{
	struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);

	periph->cached[IRQ_EN_SET] |= d->hwirq & 0xFF;
}

static int i2c_pmic_irq_set_type(struct irq_data *d, unsigned int irq_type)
{
	struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);

	switch (irq_type) {
	case IRQ_TYPE_EDGE_RISING:
		periph->cached[IRQ_SET_TYPE] |= d->hwirq & 0xFF;
		periph->cached[IRQ_POL_HIGH] |= d->hwirq & 0xFF;
		periph->cached[IRQ_POL_LOW] &= ~d->hwirq & 0xFF;
		break;
	case IRQ_TYPE_EDGE_FALLING:
		periph->cached[IRQ_SET_TYPE] |= d->hwirq & 0xFF;
		periph->cached[IRQ_POL_HIGH] &= ~d->hwirq & 0xFF;
		periph->cached[IRQ_POL_LOW] |= d->hwirq & 0xFF;
		break;
	case IRQ_TYPE_EDGE_BOTH:
		periph->cached[IRQ_SET_TYPE] |= d->hwirq & 0xFF;
		periph->cached[IRQ_POL_HIGH] |= d->hwirq & 0xFF;
		periph->cached[IRQ_POL_LOW] |= d->hwirq & 0xFF;
		break;
	case IRQ_TYPE_LEVEL_HIGH:
		periph->cached[IRQ_SET_TYPE] &= ~d->hwirq & 0xFF;
		periph->cached[IRQ_POL_HIGH] |= d->hwirq & 0xFF;
		periph->cached[IRQ_POL_LOW] &= ~d->hwirq & 0xFF;
		break;
	case IRQ_TYPE_LEVEL_LOW:
		periph->cached[IRQ_SET_TYPE] &= ~d->hwirq & 0xFF;
		periph->cached[IRQ_POL_HIGH] &= ~d->hwirq & 0xFF;
		periph->cached[IRQ_POL_LOW] |= d->hwirq & 0xFF;
		break;
	default:
		pr_err("irq type 0x%04x is not supported\n", irq_type);
		return -EINVAL;
	}

	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int i2c_pmic_irq_set_wake(struct irq_data *d, unsigned int on)
{
	struct i2c_pmic_periph *periph = irq_data_get_irq_chip_data(d);

	if (on)
		periph->wake |= d->hwirq & 0xFF;
	else
		periph->wake &= ~d->hwirq & 0xFF;

	return 0;
}
#else
#define i2c_pmic_irq_set_wake NULL
#endif

static struct irq_chip i2c_pmic_irq_chip = {
	.name			= "i2c_pmic_irq_chip",
	.irq_bus_lock		= i2c_pmic_irq_bus_lock,
	.irq_bus_sync_unlock	= i2c_pmic_irq_bus_sync_unlock,
	.irq_disable		= i2c_pmic_irq_disable,
	.irq_enable		= i2c_pmic_irq_enable,
	.irq_set_type		= i2c_pmic_irq_set_type,
	.irq_set_wake		= i2c_pmic_irq_set_wake,
};

static struct i2c_pmic_periph *i2c_pmic_find_periph(struct i2c_pmic *chip,
						    irq_hw_number_t hwirq)
{
	int i;

	for (i = 0; i < chip->num_periphs; i++)
		if (chip->periph[i].addr == (hwirq & 0xFF00))
			return &chip->periph[i];

	pr_err_ratelimited("Couldn't find periph struct for hwirq 0x%04lx\n",
			   hwirq);
	return NULL;
}

static int i2c_pmic_domain_map(struct irq_domain *d, unsigned int virq,
			irq_hw_number_t hwirq)
{
	struct i2c_pmic *chip = d->host_data;
	struct i2c_pmic_periph *periph = i2c_pmic_find_periph(chip, hwirq);

	if (!periph)
		return -ENODEV;

	irq_set_chip_data(virq, periph);
	irq_set_chip_and_handler(virq, &i2c_pmic_irq_chip, handle_level_irq);
	irq_set_nested_thread(virq, 1);
	irq_set_noprobe(virq);
	return 0;
}

static int i2c_pmic_domain_xlate(struct irq_domain *d,
				 struct device_node *ctrlr, const u32 *intspec,
				 unsigned int intsize, unsigned long *out_hwirq,
				 unsigned int *out_type)
{
	if (intsize != 3)
		return -EINVAL;

	if (intspec[0] > 0xFF || intspec[1] > 0x7 ||
					intspec[2] > IRQ_TYPE_SENSE_MASK)
		return -EINVAL;

	/*
	 * Interrupt specifiers are triplets
	 * <peripheral-address, irq-number, IRQ_TYPE_*>
	 *
	 * peripheral-address - The base address of the peripheral
	 * irq-number	      - The zero based bit position of the peripheral's
	 *			interrupt registers corresponding to the irq
	 *			where the LSB is 0 and the MSB is 7
	 * IRQ_TYPE_*	      - Please refer to linux/irq.h
	 */
	*out_hwirq = intspec[0] << 8 | BIT(intspec[1]);
	*out_type = intspec[2] & IRQ_TYPE_SENSE_MASK;

	return 0;
}

static const struct irq_domain_ops i2c_pmic_domain_ops = {
	.map	= i2c_pmic_domain_map,
	.xlate	= i2c_pmic_domain_xlate,
};

static void i2c_pmic_irq_ack_now(struct i2c_pmic *chip, u16 hwirq)
{
	int rc;

	rc = regmap_write(chip->regmap,
			  (hwirq & 0xFF00) | INT_LATCHED_CLR_OFFSET,
			  hwirq & 0xFF);
	if (rc < 0)
		pr_err_ratelimited("Couldn't ack 0x%04x rc=%d\n", hwirq, rc);
}

static void i2c_pmic_irq_disable_now(struct i2c_pmic *chip, u16 hwirq)
{
	struct i2c_pmic_periph *periph = i2c_pmic_find_periph(chip, hwirq);
	int rc;

	if (!periph)
		return;

	mutex_lock(&periph->lock);
	periph->cached[IRQ_EN_SET] &= ~hwirq & 0xFF;

	rc = regmap_write(chip->regmap,
			  (hwirq & 0xFF00) | INT_EN_CLR_OFFSET,
			  hwirq & 0xFF);
	if (rc < 0) {
		pr_err_ratelimited("Couldn't disable irq 0x%04x rc=%d\n",
				   hwirq, rc);
		goto unlock;
	}

	periph->synced[IRQ_EN_SET] = periph->cached[IRQ_EN_SET];

unlock:
	mutex_unlock(&periph->lock);
}

static void i2c_pmic_periph_status_handler(struct i2c_pmic *chip,
					   u16 periph_address, u8 periph_status)
{
	unsigned int hwirq, virq;
	int i;

	while (periph_status) {
		i = ffs(periph_status) - 1;
		periph_status &= ~BIT(i);
		hwirq = periph_address | BIT(i);
		virq = irq_find_mapping(chip->domain, hwirq);
		if (virq == 0) {
			pr_err_ratelimited("Couldn't find mapping; disabling 0x%04x\n",
					   hwirq);
			i2c_pmic_irq_disable_now(chip, hwirq);
			continue;
		}

		handle_nested_irq(virq);
		i2c_pmic_irq_ack_now(chip, hwirq);
	}
}

static void i2c_pmic_summary_status_handler(struct i2c_pmic *chip,
					    struct i2c_pmic_periph *periph,
					    u8 summary_status)
{
	unsigned int periph_status;
	int rc, i;

	while (summary_status) {
		i = ffs(summary_status) - 1;
		summary_status &= ~BIT(i);

		rc = regmap_read(chip->regmap,
				 periph[i].addr | INT_LATCHED_STS_OFFSET,
				 &periph_status);
		if (rc < 0) {
			pr_err_ratelimited("Couldn't read 0x%04x | INT_LATCHED_STS rc=%d\n",
					   periph[i].addr, rc);
			continue;
		}

		i2c_pmic_periph_status_handler(chip, periph[i].addr,
					       periph_status);
	}
}

static irqreturn_t i2c_pmic_irq_handler(int irq, void *dev_id)
{
	struct i2c_pmic *chip = dev_id;
	struct i2c_pmic_periph *periph;
	unsigned int summary_status;
	int rc, i;

	mutex_lock(&chip->irq_complete);
	chip->irq_waiting = true;
	if (!chip->resume_completed) {
		pr_debug("IRQ triggered before device-resume\n");
		disable_irq_nosync(irq);
		mutex_unlock(&chip->irq_complete);
		return IRQ_HANDLED;
	}
	chip->irq_waiting = false;

	for (i = 0; i < DIV_ROUND_UP(chip->num_periphs, BITS_PER_BYTE); i++) {
		rc = regmap_read(chip->regmap, I2C_INTR_STATUS_BASE + i,
				&summary_status);
		if (rc < 0) {
			pr_err_ratelimited("Couldn't read I2C_INTR_STATUS%d rc=%d\n",
					   i, rc);
			continue;
		}

		if (summary_status == 0)
			continue;

		periph = &chip->periph[i * 8];
		i2c_pmic_summary_status_handler(chip, periph, summary_status);
	}

	mutex_unlock(&chip->irq_complete);

	return IRQ_HANDLED;
}

static int i2c_pmic_parse_dt(struct i2c_pmic *chip)
{
	struct device_node *node = chip->dev->of_node;
	int rc, i;
	u32 temp;

	if (!node) {
		pr_err("missing device tree\n");
		return -EINVAL;
	}

	chip->num_periphs = of_property_count_u32_elems(node,
							"qcom,periph-map");
	if (chip->num_periphs < 0) {
		pr_err("missing qcom,periph-map property rc=%d\n",
			chip->num_periphs);
		return chip->num_periphs;
	}

	if (chip->num_periphs == 0) {
		pr_err("qcom,periph-map must contain at least one address\n");
		return -EINVAL;
	}

	chip->periph = devm_kcalloc(chip->dev, chip->num_periphs,
				     sizeof(*chip->periph), GFP_KERNEL);
	if (!chip->periph)
		return -ENOMEM;

	for (i = 0; i < chip->num_periphs; i++) {
		rc = of_property_read_u32_index(node, "qcom,periph-map",
						i, &temp);
		if (rc < 0) {
			pr_err("Couldn't read qcom,periph-map[%d] rc=%d\n",
			       i, rc);
			return rc;
		}

		chip->periph[i].addr = (u16)(temp << 8);
		chip->periph[i].data = chip;
		mutex_init(&chip->periph[i].lock);
	}

	of_property_read_string(node, "pinctrl-names", &chip->pinctrl_name);

	return rc;
}

#define MAX_I2C_RETRIES	3
static int i2c_pmic_read(struct regmap *map, unsigned int reg, void *val,
			size_t val_count)
{
	int rc, retries = 0;

	do {
		rc = regmap_bulk_read(map, reg, val, val_count);
	} while (rc == -ENOTCONN && retries++ < MAX_I2C_RETRIES);

	if (retries > 1)
		pr_err("i2c_pmic_read failed for %d retries, rc = %d\n",
			retries - 1, rc);

	return rc;
}

static int i2c_pmic_determine_initial_status(struct i2c_pmic *chip)
{
	int rc, i;

	for (i = 0; i < chip->num_periphs; i++) {
		rc = i2c_pmic_read(chip->regmap,
				chip->periph[i].addr | INT_SET_TYPE_OFFSET,
				chip->periph[i].cached, IRQ_MAX_REGS);
		if (rc < 0) {
			pr_err("Couldn't read irq data rc=%d\n", rc);
			return rc;
		}

		memcpy(chip->periph[i].synced, chip->periph[i].cached,
		       IRQ_MAX_REGS * sizeof(*chip->periph[i].synced));
	}

	return 0;
}

static struct regmap_config i2c_pmic_regmap_config = {
	.reg_bits	= 16,
	.val_bits	= 8,
	.max_register	= 0xFFFF,
};

static int i2c_pmic_probe(struct i2c_client *client,
			  const struct i2c_device_id *id)
{
	struct i2c_pmic *chip;
	int rc = 0;

	chip = devm_kzalloc(&client->dev, sizeof(*chip), GFP_KERNEL);
	if (!chip)
		return -ENOMEM;

	chip->dev = &client->dev;
	chip->regmap = devm_regmap_init_i2c(client, &i2c_pmic_regmap_config);
	if (!chip->regmap)
		return -ENODEV;

	i2c_set_clientdata(client, chip);
	if (!of_property_read_bool(chip->dev->of_node, "interrupt-controller"))
		goto probe_children;

	chip->domain = irq_domain_add_tree(client->dev.of_node,
					   &i2c_pmic_domain_ops, chip);
	if (!chip->domain) {
		rc = -ENOMEM;
		goto cleanup;
	}

	rc = i2c_pmic_parse_dt(chip);
	if (rc < 0) {
		pr_err("Couldn't parse device tree rc=%d\n", rc);
		goto cleanup;
	}

	rc = i2c_pmic_determine_initial_status(chip);
	if (rc < 0) {
		pr_err("Couldn't determine initial status rc=%d\n", rc);
		goto cleanup;
	}

	if (chip->pinctrl_name) {
		chip->pinctrl = devm_pinctrl_get_select(chip->dev,
							chip->pinctrl_name);
		if (IS_ERR(chip->pinctrl)) {
			pr_err("Couldn't select %s pinctrl rc=%ld\n",
				chip->pinctrl_name, PTR_ERR(chip->pinctrl));
			rc = PTR_ERR(chip->pinctrl);
			goto cleanup;
		}
	}

	chip->resume_completed = true;
	mutex_init(&chip->irq_complete);

	rc = devm_request_threaded_irq(&client->dev, client->irq, NULL,
				       i2c_pmic_irq_handler,
				       IRQF_ONESHOT | IRQF_SHARED,
				       "i2c_pmic_stat_irq", chip);
	if (rc < 0) {
		pr_err("Couldn't request irq %d rc=%d\n", client->irq, rc);
		goto cleanup;
	}

	chip->summary_irq = client->irq;
	enable_irq_wake(client->irq);

probe_children:
	of_platform_populate(chip->dev->of_node, NULL, NULL, chip->dev);
	pr_info("I2C PMIC probe successful\n");
	return rc;

cleanup:
	if (chip->domain)
		irq_domain_remove(chip->domain);
	i2c_set_clientdata(client, NULL);
	return rc;
}

static int i2c_pmic_remove(struct i2c_client *client)
{
	struct i2c_pmic *chip = i2c_get_clientdata(client);

	of_platform_depopulate(chip->dev);
	if (chip->domain)
		irq_domain_remove(chip->domain);
	i2c_set_clientdata(client, NULL);
	return 0;
}

#ifdef CONFIG_PM_SLEEP
static int i2c_pmic_suspend_noirq(struct device *dev)
{
	struct i2c_pmic *chip = dev_get_drvdata(dev);

	if (chip->irq_waiting) {
		pr_err_ratelimited("Aborting suspend, an interrupt was detected while suspending\n");
		return -EBUSY;
	}
	return 0;
}

static int i2c_pmic_suspend(struct device *dev)
{
	struct i2c_pmic *chip = dev_get_drvdata(dev);
	struct i2c_pmic_periph *periph;
	int rc = 0, i;

	for (i = 0; i < chip->num_periphs; i++) {
		periph = &chip->periph[i];

		rc = regmap_write(chip->regmap,
				  periph->addr | INT_EN_CLR_OFFSET, 0xFF);
		if (rc < 0) {
			pr_err_ratelimited("Couldn't clear 0x%04x irqs rc=%d\n",
				periph->addr, rc);
			continue;
		}

		rc = regmap_write(chip->regmap,
				  periph->addr | INT_EN_SET_OFFSET,
				  periph->wake);
		if (rc < 0)
			pr_err_ratelimited("Couldn't enable 0x%04x wake irqs 0x%02x rc=%d\n",
			       periph->addr, periph->wake, rc);
	}
	if (!rc) {
		mutex_lock(&chip->irq_complete);
		chip->resume_completed = false;
		mutex_unlock(&chip->irq_complete);
	}

	return rc;
}

static int i2c_pmic_resume(struct device *dev)
{
	struct i2c_pmic *chip = dev_get_drvdata(dev);
	struct i2c_pmic_periph *periph;
	int rc = 0, i;

	for (i = 0; i < chip->num_periphs; i++) {
		periph = &chip->periph[i];

		rc = regmap_write(chip->regmap,
				  periph->addr | INT_EN_CLR_OFFSET, 0xFF);
		if (rc < 0) {
			pr_err("Couldn't clear 0x%04x irqs rc=%d\n",
				periph->addr, rc);
			continue;
		}

		rc = regmap_write(chip->regmap,
				  periph->addr | INT_EN_SET_OFFSET,
				  periph->synced[IRQ_EN_SET]);
		if (rc < 0)
			pr_err("Couldn't restore 0x%04x synced irqs 0x%02x rc=%d\n",
			       periph->addr, periph->synced[IRQ_EN_SET], rc);
	}

	mutex_lock(&chip->irq_complete);
	chip->resume_completed = true;
	if (chip->irq_waiting) {
		mutex_unlock(&chip->irq_complete);
		/* irq was pending, call the handler */
		i2c_pmic_irq_handler(chip->summary_irq, chip);
		enable_irq(chip->summary_irq);
	} else {
		mutex_unlock(&chip->irq_complete);
	}

	return rc;
}
#else
static int i2c_pmic_suspend(struct device *dev)
{
	return 0;
}
static int i2c_pmic_resume(struct device *dev)
{
	return 0;
}
static int i2c_pmic_suspend_noirq(struct device *dev)
{
	return 0
}
#endif
static const struct dev_pm_ops i2c_pmic_pm_ops = {
	.suspend	= i2c_pmic_suspend,
	.suspend_noirq	= i2c_pmic_suspend_noirq,
	.resume		= i2c_pmic_resume,
};

static const struct of_device_id i2c_pmic_match_table[] = {
	{ .compatible = "qcom,i2c-pmic", },
	{ },
};

static const struct i2c_device_id i2c_pmic_id[] = {
	{ "i2c-pmic", 0 },
	{ },
};
MODULE_DEVICE_TABLE(i2c, i2c_pmic_id);

static struct i2c_driver i2c_pmic_driver = {
	.driver		= {
		.name		= "i2c_pmic",
		.owner		= THIS_MODULE,
		.pm		= &i2c_pmic_pm_ops,
		.of_match_table	= i2c_pmic_match_table,
	},
	.probe		= i2c_pmic_probe,
	.remove		= i2c_pmic_remove,
	.id_table	= i2c_pmic_id,
};

module_i2c_driver(i2c_pmic_driver);

MODULE_LICENSE("GPL v2");
MODULE_ALIAS("i2c:i2c_pmic");