Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 90d501d6 authored by Stefano Brivio's avatar Stefano Brivio Committed by David S. Miller
Browse files

rc80211-pid: add rate behaviour learning algorithm



This patch introduces a learning algorithm in order for the PID controller
to learn how to map adjustment values to rates. This is better described in
code comments.

Signed-off-by: default avatarStefano Brivio <stefano.brivio@polimi.it>
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
parent c21b39ac
Loading
Loading
Loading
Loading
+161 −20
Original line number Diff line number Diff line
@@ -2,6 +2,7 @@
 * Copyright 2002-2005, Instant802 Networks, Inc.
 * Copyright 2005, Devicescape Software, Inc.
 * Copyright 2007, Mattias Nissler <mattias.nissler@gmx.de>
 * Copyright 2007, Stefano Brivio <stefano.brivio@polimi.it>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
@@ -39,12 +40,18 @@
 * an actual sliding window. The advantage is that we don't need to keep an
 * array of the last N error values and computation is easier.
 *
 * Once we have the adj value, we need to map it to a TX rate to be selected.
 * For now, we depend on the rates to be ordered in a way such that more robust
 * rates (i.e. such that exhibit a lower framed failed percentage) come first.
 * E.g. for the 802.11b/g case, we first have the b rates in ascending order,
 * then the g rates. The adj simply decides the index of the TX rate in the list
 * to switch to (relative to the current TX rate entry).
 * Once we have the adj value, we map it to a rate by means of a learning
 * algorithm. This algorithm keeps the state of the percentual failed frames
 * difference between rates. The behaviour of the lowest available rate is kept
 * as a reference value, and every time we switch between two rates, we compute
 * the difference between the failed frames each rate exhibited. By doing so,
 * we compare behaviours which different rates exhibited in adjacent timeslices,
 * thus the comparison is minimally affected by external conditions. This
 * difference gets propagated to the whole set of measurements, so that the
 * reference is always the same. Periodically, we normalize this set so that
 * recent events weigh the most. By comparing the adj value with this set, we
 * avoid pejorative switches to lower rates and allow for switches to higher
 * rates if they behaved well.
 *
 * Note that for the computations we use a fixed-point representation to avoid
 * floating point arithmetic. Hence, all values are shifted left by
@@ -78,6 +85,16 @@
 */
#define RC_PID_TARGET_PF (11 << RC_PID_ARITH_SHIFT)

/* Rate behaviour normalization quantity over time. */
#define RC_PID_NORM_OFFSET 3

/* Push high rates right after loading. */
#define RC_PID_FAST_START 0

/* Arithmetic right shift for positive and negative values for ISO C. */
#define RC_PID_DO_ARITH_RIGHT_SHIFT(x, y) \
	(x) < 0 ? -((-(x)) >> (y)) : (x) >> (y)

struct rc_pid_sta_info {
	unsigned long last_change;
	unsigned long last_sample;
@@ -121,6 +138,18 @@ struct rc_pid_sta_info {
/* Algorithm parameters. We keep them on a per-algorithm approach, so they can
 * be tuned individually for each interface.
 */
struct rc_pid_rateinfo {

	/* Map sorted rates to rates in ieee80211_hw_mode. */
	int index;

	/* Map rates in ieee80211_hw_mode to sorted rates. */
	int rev_index;

	/* Comparison with the lowest rate. */
	int diff;
};

struct rc_pid_info {

	/* The failed frames percentage target. */
@@ -130,15 +159,56 @@ struct rc_pid_info {
	s32 coeff_p;
	s32 coeff_i;
	s32 coeff_d;

	/* Rates information. */
	struct rc_pid_rateinfo *rinfo;

	/* Index of the last used rate. */
	int oldrate;
};

/* Shift the adjustment so that we won't switch to a lower rate if it exhibited
 * a worse failed frames behaviour and we'll choose the highest rate whose
 * failed frames behaviour is not worse than the one of the original rate
 * target. While at it, check that the adjustment is within the ranges. Then,
 * provide the new rate index. */
static int rate_control_pid_shift_adjust(struct rc_pid_rateinfo *r,
					 int adj, int cur, int l)
{
	int i, j, k, tmp;

	if (cur + adj < 0)
		return 0;
	if (cur + adj >= l)
		return l - 1;

	i = r[cur + adj].rev_index;

	j = r[cur].rev_index;

	if (adj < 0) {
			tmp = i;
			for (k = j; k >= i; k--)
				if (r[k].diff <= r[j].diff)
					tmp = k;
			return r[tmp].index;
	} else if (adj > 0) {
			tmp = i;
			for (k = i + 1; k + i < l; k++)
				if (r[k].diff <= r[i].diff)
					tmp = k;
			return r[tmp].index;
	}
	return cur + adj;
}

static void rate_control_pid_adjust_rate(struct ieee80211_local *local,
					 struct sta_info *sta, int adj)
					 struct sta_info *sta, int adj,
					 struct rc_pid_rateinfo *rinfo)
{
	struct ieee80211_sub_if_data *sdata;
	struct ieee80211_hw_mode *mode;
	int newidx = sta->txrate + adj;
	int newidx;
	int maxrate;
	int back = (adj > 0) ? 1 : -1;

@@ -151,10 +221,8 @@ static void rate_control_pid_adjust_rate(struct ieee80211_local *local,
	mode = local->oper_hw_mode;
	maxrate = sdata->bss ? sdata->bss->max_ratectrl_rateidx : -1;

	if (newidx < 0)
		newidx = 0;
	else if (newidx >= mode->num_rates)
		newidx = mode->num_rates - 1;
	newidx = rate_control_pid_shift_adjust(rinfo, adj, sta->txrate,
					       mode->num_rates);

	while (newidx != sta->txrate) {
		if (rate_supported(sta, mode, newidx) &&
@@ -167,18 +235,37 @@ static void rate_control_pid_adjust_rate(struct ieee80211_local *local,
	}
}

/* Normalize the failed frames per-rate differences. */
static void rate_control_pid_normalize(struct rc_pid_rateinfo *r, int l)
{
	int i;

	if (r[0].diff > RC_PID_NORM_OFFSET)
		r[0].diff -= RC_PID_NORM_OFFSET;
	else if (r[0].diff < -RC_PID_NORM_OFFSET)
		r[0].diff += RC_PID_NORM_OFFSET;
	for (i = 0; i < l - 1; i++)
		if (r[i + 1].diff > r[i].diff + RC_PID_NORM_OFFSET)
			r[i + 1].diff -= RC_PID_NORM_OFFSET;
		else if (r[i + 1].diff <= r[i].diff)
			r[i + 1].diff += RC_PID_NORM_OFFSET;
}

static void rate_control_pid_sample(struct rc_pid_info *pinfo,
				    struct ieee80211_local *local,
				    struct sta_info *sta)
{
	struct rc_pid_sta_info *spinfo = sta->rate_ctrl_priv;
	struct rc_pid_rateinfo *rinfo = pinfo->rinfo;
	struct ieee80211_hw_mode *mode;
	u32 pf;
	s32 err_avg;
	s32 err_prop;
	s32 err_int;
	s32 err_der;
	int adj;
	int adj, i, j, tmp;

	mode = local->oper_hw_mode;
	spinfo = sta->rate_ctrl_priv;
	spinfo->last_sample = jiffies;

@@ -194,6 +281,20 @@ static void rate_control_pid_sample(struct rc_pid_info *pinfo,
		spinfo->tx_num_failed = 0;
	}

	/* If we just switched rate, update the rate behaviour info. */
	if (pinfo->oldrate != sta->txrate) {

		i = rinfo[pinfo->oldrate].rev_index;
		j = rinfo[sta->txrate].rev_index;

		tmp = (pf - spinfo->last_pf);
		tmp = RC_PID_DO_ARITH_RIGHT_SHIFT(tmp, RC_PID_ARITH_SHIFT);

		rinfo[j].diff = rinfo[i].diff + tmp;
		pinfo->oldrate = sta->txrate;
	}
	rate_control_pid_normalize(rinfo, mode->num_rates);

	/* Compute the proportional, integral and derivative errors. */
	err_prop = RC_PID_TARGET_PF - pf;

@@ -207,16 +308,11 @@ static void rate_control_pid_sample(struct rc_pid_info *pinfo,
	/* Compute the controller output. */
	adj = (err_prop * pinfo->coeff_p + err_int * pinfo->coeff_i
	      + err_der * pinfo->coeff_d);

	/* We need to do an arithmetic right shift. ISO C says this is
	 * implementation defined for negative left operands. Hence, be
	 * careful to get it right, also for negative values. */
	adj = (adj < 0) ? -((-adj) >> (2 * RC_PID_ARITH_SHIFT)) :
			  adj >> (2 * RC_PID_ARITH_SHIFT);
	adj = RC_PID_DO_ARITH_RIGHT_SHIFT(adj, 2 * RC_PID_ARITH_SHIFT);

	/* Change rate. */
	if (adj)
		rate_control_pid_adjust_rate(local, sta, adj);
		rate_control_pid_adjust_rate(local, sta, adj, rinfo);
}

static void rate_control_pid_tx_status(void *priv, struct net_device *dev,
@@ -316,13 +412,57 @@ static void rate_control_pid_rate_init(void *priv, void *priv_sta,
static void *rate_control_pid_alloc(struct ieee80211_local *local)
{
	struct rc_pid_info *pinfo;
	struct rc_pid_rateinfo *rinfo;
	struct ieee80211_hw_mode *mode;
	int i, j, tmp;
	bool s;

	pinfo = kmalloc(sizeof(*pinfo), GFP_ATOMIC);
	if (!pinfo)
		return NULL;

	/* We can safely assume that oper_hw_mode won't change unless we get
	 * reinitialized. */
	mode = local->oper_hw_mode;
	rinfo = kmalloc(sizeof(*rinfo) * mode->num_rates, GFP_ATOMIC);
	if (!rinfo) {
		kfree(pinfo);
		return NULL;
	}

	/* Sort the rates. This is optimized for the most common case (i.e.
	 * almost-sorted CCK+OFDM rates). Kind of bubble-sort with reversed
	 * mapping too. */
	for (i = 0; i < mode->num_rates; i++) {
		rinfo[i].index = i;
		rinfo[i].rev_index = i;
		if (RC_PID_FAST_START)
			rinfo[i].diff = 0;
		else
			rinfo[i].diff = i * RC_PID_NORM_OFFSET;
	}
	for (i = 1; i < mode->num_rates; i++) {
		s = 0;
		for (j = 0; j < mode->num_rates - i; j++)
			if (unlikely(mode->rates[rinfo[j].index].rate >
				     mode->rates[rinfo[j + 1].index].rate)) {
				tmp = rinfo[j].index;
				rinfo[j].index = rinfo[j + 1].index;
				rinfo[j + 1].index = tmp;
				rinfo[rinfo[j].index].rev_index = j;
				rinfo[rinfo[j + 1].index].rev_index = j + 1;
				s = 1;
			}
		if (!s)
			break;
	}

	pinfo->target = RC_PID_TARGET_PF;
	pinfo->coeff_p = RC_PID_COEFF_P;
	pinfo->coeff_i = RC_PID_COEFF_I;
	pinfo->coeff_d = RC_PID_COEFF_D;
	pinfo->rinfo = rinfo;
	pinfo->oldrate = 0;

	return pinfo;
}
@@ -330,6 +470,7 @@ static void *rate_control_pid_alloc(struct ieee80211_local *local)
static void rate_control_pid_free(void *priv)
{
	struct rc_pid_info *pinfo = priv;
	kfree(pinfo->rinfo);
	kfree(pinfo);
}