Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit decf6d79 authored by Jens Axboe's avatar Jens Axboe
Browse files

Merge branch 'for-3.20' of git://git.infradead.org/users/kbusch/linux-nvme into for-linus

Merge 3.20 NVMe changes from Keith.
parents 045c47ca 0c0f9b95
Loading
Loading
Loading
Loading
+331 −165
Original line number Diff line number Diff line
@@ -37,17 +37,18 @@
#include <linux/ptrace.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/t10-pi.h>
#include <linux/types.h>
#include <scsi/sg.h>
#include <asm-generic/io-64-nonatomic-lo-hi.h>

#define NVME_MINORS		(1U << MINORBITS)
#define NVME_Q_DEPTH		1024
#define NVME_AQ_DEPTH		64
#define SQ_SIZE(depth)		(depth * sizeof(struct nvme_command))
#define CQ_SIZE(depth)		(depth * sizeof(struct nvme_completion))
#define ADMIN_TIMEOUT		(admin_timeout * HZ)
#define SHUTDOWN_TIMEOUT	(shutdown_timeout * HZ)
#define IOD_TIMEOUT		(retry_time * HZ)

static unsigned char admin_timeout = 60;
module_param(admin_timeout, byte, 0644);
@@ -57,10 +58,6 @@ unsigned char nvme_io_timeout = 30;
module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");

static unsigned char retry_time = 30;
module_param(retry_time, byte, 0644);
MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");

static unsigned char shutdown_timeout = 5;
module_param(shutdown_timeout, byte, 0644);
MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
@@ -68,6 +65,9 @@ MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown")
static int nvme_major;
module_param(nvme_major, int, 0);

static int nvme_char_major;
module_param(nvme_char_major, int, 0);

static int use_threaded_interrupts;
module_param(use_threaded_interrupts, int, 0);

@@ -76,7 +76,8 @@ static LIST_HEAD(dev_list);
static struct task_struct *nvme_thread;
static struct workqueue_struct *nvme_workq;
static wait_queue_head_t nvme_kthread_wait;
static struct notifier_block nvme_nb;

static struct class *nvme_class;

static void nvme_reset_failed_dev(struct work_struct *ws);
static int nvme_process_cq(struct nvme_queue *nvmeq);
@@ -95,7 +96,6 @@ struct async_cmd_info {
 * commands and one for I/O commands).
 */
struct nvme_queue {
	struct llist_node node;
	struct device *q_dmadev;
	struct nvme_dev *dev;
	char irqname[24];	/* nvme4294967295-65535\0 */
@@ -482,6 +482,62 @@ static int nvme_error_status(u16 status)
	}
}

static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi)
{
	if (be32_to_cpu(pi->ref_tag) == v)
		pi->ref_tag = cpu_to_be32(p);
}

static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi)
{
	if (be32_to_cpu(pi->ref_tag) == p)
		pi->ref_tag = cpu_to_be32(v);
}

/**
 * nvme_dif_remap - remaps ref tags to bip seed and physical lba
 *
 * The virtual start sector is the one that was originally submitted by the
 * block layer.	Due to partitioning, MD/DM cloning, etc. the actual physical
 * start sector may be different. Remap protection information to match the
 * physical LBA on writes, and back to the original seed on reads.
 *
 * Type 0 and 3 do not have a ref tag, so no remapping required.
 */
static void nvme_dif_remap(struct request *req,
			void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi))
{
	struct nvme_ns *ns = req->rq_disk->private_data;
	struct bio_integrity_payload *bip;
	struct t10_pi_tuple *pi;
	void *p, *pmap;
	u32 i, nlb, ts, phys, virt;

	if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3)
		return;

	bip = bio_integrity(req->bio);
	if (!bip)
		return;

	pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset;
	if (!pmap)
		return;

	p = pmap;
	virt = bip_get_seed(bip);
	phys = nvme_block_nr(ns, blk_rq_pos(req));
	nlb = (blk_rq_bytes(req) >> ns->lba_shift);
	ts = ns->disk->integrity->tuple_size;

	for (i = 0; i < nlb; i++, virt++, phys++) {
		pi = (struct t10_pi_tuple *)p;
		dif_swap(phys, virt, pi);
		p += ts;
	}
	kunmap_atomic(pmap);
}

static void req_completion(struct nvme_queue *nvmeq, void *ctx,
						struct nvme_completion *cqe)
{
@@ -512,9 +568,16 @@ static void req_completion(struct nvme_queue *nvmeq, void *ctx,
			"completing aborted command with status:%04x\n",
			status);

	if (iod->nents)
	if (iod->nents) {
		dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
			rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
		if (blk_integrity_rq(req)) {
			if (!rq_data_dir(req))
				nvme_dif_remap(req, nvme_dif_complete);
			dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->meta_sg, 1,
				rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
		}
	}
	nvme_free_iod(nvmeq->dev, iod);

	blk_mq_complete_request(req);
@@ -670,6 +733,24 @@ static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
	cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
	cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);

	if (blk_integrity_rq(req)) {
		cmnd->rw.metadata = cpu_to_le64(sg_dma_address(iod->meta_sg));
		switch (ns->pi_type) {
		case NVME_NS_DPS_PI_TYPE3:
			control |= NVME_RW_PRINFO_PRCHK_GUARD;
			break;
		case NVME_NS_DPS_PI_TYPE1:
		case NVME_NS_DPS_PI_TYPE2:
			control |= NVME_RW_PRINFO_PRCHK_GUARD |
					NVME_RW_PRINFO_PRCHK_REF;
			cmnd->rw.reftag = cpu_to_le32(
					nvme_block_nr(ns, blk_rq_pos(req)));
			break;
		}
	} else if (ns->ms)
		control |= NVME_RW_PRINFO_PRACT;

	cmnd->rw.control = cpu_to_le16(control);
	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);

@@ -690,6 +771,19 @@ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
	struct nvme_iod *iod;
	enum dma_data_direction dma_dir;

	/*
	 * If formated with metadata, require the block layer provide a buffer
	 * unless this namespace is formated such that the metadata can be
	 * stripped/generated by the controller with PRACT=1.
	 */
	if (ns->ms && !blk_integrity_rq(req)) {
		if (!(ns->pi_type && ns->ms == 8)) {
			req->errors = -EFAULT;
			blk_mq_complete_request(req);
			return BLK_MQ_RQ_QUEUE_OK;
		}
	}

	iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
	if (!iod)
		return BLK_MQ_RQ_QUEUE_BUSY;
@@ -725,6 +819,21 @@ static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
					iod->nents, dma_dir);
			goto retry_cmd;
		}
		if (blk_integrity_rq(req)) {
			if (blk_rq_count_integrity_sg(req->q, req->bio) != 1)
				goto error_cmd;

			sg_init_table(iod->meta_sg, 1);
			if (blk_rq_map_integrity_sg(
					req->q, req->bio, iod->meta_sg) != 1)
				goto error_cmd;

			if (rq_data_dir(req))
				nvme_dif_remap(req, nvme_dif_prep);

			if (!dma_map_sg(nvmeq->q_dmadev, iod->meta_sg, 1, dma_dir))
				goto error_cmd;
		}
	}

	nvme_set_info(cmd, iod, req_completion);
@@ -817,14 +926,6 @@ static irqreturn_t nvme_irq_check(int irq, void *data)
	return IRQ_WAKE_THREAD;
}

static void nvme_abort_cmd_info(struct nvme_queue *nvmeq, struct nvme_cmd_info *
								cmd_info)
{
	spin_lock_irq(&nvmeq->q_lock);
	cancel_cmd_info(cmd_info, NULL);
	spin_unlock_irq(&nvmeq->q_lock);
}

struct sync_cmd_info {
	struct task_struct *task;
	u32 result;
@@ -847,7 +948,6 @@ static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
						u32 *result, unsigned timeout)
{
	int ret;
	struct sync_cmd_info cmdinfo;
	struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
	struct nvme_queue *nvmeq = cmd_rq->nvmeq;
@@ -859,29 +959,12 @@ static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,

	nvme_set_info(cmd_rq, &cmdinfo, sync_completion);

	set_current_state(TASK_KILLABLE);
	ret = nvme_submit_cmd(nvmeq, cmd);
	if (ret) {
		nvme_finish_cmd(nvmeq, req->tag, NULL);
		set_current_state(TASK_RUNNING);
	}
	ret = schedule_timeout(timeout);

	/*
	 * Ensure that sync_completion has either run, or that it will
	 * never run.
	 */
	nvme_abort_cmd_info(nvmeq, blk_mq_rq_to_pdu(req));

	/*
	 * We never got the completion
	 */
	if (cmdinfo.status == -EINTR)
		return -EINTR;
	set_current_state(TASK_UNINTERRUPTIBLE);
	nvme_submit_cmd(nvmeq, cmd);
	schedule();

	if (result)
		*result = cmdinfo.result;

	return cmdinfo.status;
}

@@ -1158,29 +1241,18 @@ static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
	struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
	struct nvme_queue *nvmeq = cmd->nvmeq;

	/*
	 * The aborted req will be completed on receiving the abort req.
	 * We enable the timer again. If hit twice, it'll cause a device reset,
	 * as the device then is in a faulty state.
	 */
	int ret = BLK_EH_RESET_TIMER;

	dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
							nvmeq->qid);

	spin_lock_irq(&nvmeq->q_lock);
	if (!nvmeq->dev->initialized) {
		/*
		 * Force cancelled command frees the request, which requires we
		 * return BLK_EH_NOT_HANDLED.
		 */
		nvme_cancel_queue_ios(nvmeq->hctx, req, nvmeq, reserved);
		ret = BLK_EH_NOT_HANDLED;
	} else
	nvme_abort_req(req);
	spin_unlock_irq(&nvmeq->q_lock);

	return ret;
	/*
	 * The aborted req will be completed on receiving the abort req.
	 * We enable the timer again. If hit twice, it'll cause a device reset,
	 * as the device then is in a faulty state.
	 */
	return BLK_EH_RESET_TIMER;
}

static void nvme_free_queue(struct nvme_queue *nvmeq)
@@ -1233,7 +1305,6 @@ static void nvme_clear_queue(struct nvme_queue *nvmeq)
	struct blk_mq_hw_ctx *hctx = nvmeq->hctx;

	spin_lock_irq(&nvmeq->q_lock);
	nvme_process_cq(nvmeq);
	if (hctx && hctx->tags)
		blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
	spin_unlock_irq(&nvmeq->q_lock);
@@ -1256,7 +1327,10 @@ static void nvme_disable_queue(struct nvme_dev *dev, int qid)
	}
	if (!qid && dev->admin_q)
		blk_mq_freeze_queue_start(dev->admin_q);
	nvme_clear_queue(nvmeq);

	spin_lock_irq(&nvmeq->q_lock);
	nvme_process_cq(nvmeq);
	spin_unlock_irq(&nvmeq->q_lock);
}

static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
@@ -1875,13 +1949,61 @@ static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
	return 0;
}

static void nvme_config_discard(struct nvme_ns *ns)
{
	u32 logical_block_size = queue_logical_block_size(ns->queue);
	ns->queue->limits.discard_zeroes_data = 0;
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
	ns->queue->limits.max_discard_sectors = 0xffffffff;
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

static int nvme_noop_verify(struct blk_integrity_iter *iter)
{
	return 0;
}

static int nvme_noop_generate(struct blk_integrity_iter *iter)
{
	return 0;
}

struct blk_integrity nvme_meta_noop = {
	.name			= "NVME_META_NOOP",
	.generate_fn		= nvme_noop_generate,
	.verify_fn		= nvme_noop_verify,
};

static void nvme_init_integrity(struct nvme_ns *ns)
{
	struct blk_integrity integrity;

	switch (ns->pi_type) {
	case NVME_NS_DPS_PI_TYPE3:
		integrity = t10_pi_type3_crc;
		break;
	case NVME_NS_DPS_PI_TYPE1:
	case NVME_NS_DPS_PI_TYPE2:
		integrity = t10_pi_type1_crc;
		break;
	default:
		integrity = nvme_meta_noop;
		break;
	}
	integrity.tuple_size = ns->ms;
	blk_integrity_register(ns->disk, &integrity);
	blk_queue_max_integrity_segments(ns->queue, 1);
}

static int nvme_revalidate_disk(struct gendisk *disk)
{
	struct nvme_ns *ns = disk->private_data;
	struct nvme_dev *dev = ns->dev;
	struct nvme_id_ns *id;
	dma_addr_t dma_addr;
	int lbaf;
	int lbaf, pi_type, old_ms;
	unsigned short bs;

	id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
								GFP_KERNEL);
@@ -1890,16 +2012,50 @@ static int nvme_revalidate_disk(struct gendisk *disk)
								__func__);
		return 0;
	}
	if (nvme_identify(dev, ns->ns_id, 0, dma_addr)) {
		dev_warn(&dev->pci_dev->dev,
			"identify failed ns:%d, setting capacity to 0\n",
			ns->ns_id);
		memset(id, 0, sizeof(*id));
	}

	if (nvme_identify(dev, ns->ns_id, 0, dma_addr))
		goto free;

	lbaf = id->flbas & 0xf;
	old_ms = ns->ms;
	lbaf = id->flbas & NVME_NS_FLBAS_LBA_MASK;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
	/*
	 * If identify namespace failed, use default 512 byte block size so
	 * block layer can use before failing read/write for 0 capacity.
	 */
	if (ns->lba_shift == 0)
		ns->lba_shift = 9;
	bs = 1 << ns->lba_shift;

	/* XXX: PI implementation requires metadata equal t10 pi tuple size */
	pi_type = ns->ms == sizeof(struct t10_pi_tuple) ?
					id->dps & NVME_NS_DPS_PI_MASK : 0;

	if (disk->integrity && (ns->pi_type != pi_type || ns->ms != old_ms ||
				bs != queue_logical_block_size(disk->queue) ||
				(ns->ms && id->flbas & NVME_NS_FLBAS_META_EXT)))
		blk_integrity_unregister(disk);

	ns->pi_type = pi_type;
	blk_queue_logical_block_size(ns->queue, bs);

	if (ns->ms && !disk->integrity && (disk->flags & GENHD_FL_UP) &&
				!(id->flbas & NVME_NS_FLBAS_META_EXT))
		nvme_init_integrity(ns);

	if (id->ncap == 0 || (ns->ms && !disk->integrity))
		set_capacity(disk, 0);
	else
		set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
 free:

	if (dev->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);

	dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
	return 0;
}
@@ -1923,8 +2079,7 @@ static int nvme_kthread(void *data)
		spin_lock(&dev_list_lock);
		list_for_each_entry_safe(dev, next, &dev_list, node) {
			int i;
			if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
							dev->initialized) {
			if (readl(&dev->bar->csts) & NVME_CSTS_CFS) {
				if (work_busy(&dev->reset_work))
					continue;
				list_del_init(&dev->node);
@@ -1956,30 +2111,16 @@ static int nvme_kthread(void *data)
	return 0;
}

static void nvme_config_discard(struct nvme_ns *ns)
{
	u32 logical_block_size = queue_logical_block_size(ns->queue);
	ns->queue->limits.discard_zeroes_data = 0;
	ns->queue->limits.discard_alignment = logical_block_size;
	ns->queue->limits.discard_granularity = logical_block_size;
	ns->queue->limits.max_discard_sectors = 0xffffffff;
	queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
}

static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
			struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
static void nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid)
{
	struct nvme_ns *ns;
	struct gendisk *disk;
	int node = dev_to_node(&dev->pci_dev->dev);
	int lbaf;

	if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
		return NULL;

	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
	if (!ns)
		return NULL;
		return;

	ns->queue = blk_mq_init_queue(&dev->tagset);
	if (IS_ERR(ns->queue))
		goto out_free_ns;
@@ -1995,9 +2136,9 @@ static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,

	ns->ns_id = nsid;
	ns->disk = disk;
	lbaf = id->flbas & 0xf;
	ns->lba_shift = id->lbaf[lbaf].ds;
	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
	ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
	list_add_tail(&ns->list, &dev->namespaces);

	blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
	if (dev->max_hw_sectors)
		blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
@@ -2011,21 +2152,26 @@ static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
	disk->fops = &nvme_fops;
	disk->private_data = ns;
	disk->queue = ns->queue;
	disk->driverfs_dev = &dev->pci_dev->dev;
	disk->driverfs_dev = dev->device;
	disk->flags = GENHD_FL_EXT_DEVT;
	sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
	set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));

	if (dev->oncs & NVME_CTRL_ONCS_DSM)
		nvme_config_discard(ns);

	return ns;

	/*
	 * Initialize capacity to 0 until we establish the namespace format and
	 * setup integrity extentions if necessary. The revalidate_disk after
	 * add_disk allows the driver to register with integrity if the format
	 * requires it.
	 */
	set_capacity(disk, 0);
	nvme_revalidate_disk(ns->disk);
	add_disk(ns->disk);
	if (ns->ms)
		revalidate_disk(ns->disk);
	return;
 out_free_queue:
	blk_cleanup_queue(ns->queue);
 out_free_ns:
	kfree(ns);
	return NULL;
}

static void nvme_create_io_queues(struct nvme_dev *dev)
@@ -2150,22 +2296,20 @@ static int nvme_dev_add(struct nvme_dev *dev)
	struct pci_dev *pdev = dev->pci_dev;
	int res;
	unsigned nn, i;
	struct nvme_ns *ns;
	struct nvme_id_ctrl *ctrl;
	struct nvme_id_ns *id_ns;
	void *mem;
	dma_addr_t dma_addr;
	int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;

	mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
	mem = dma_alloc_coherent(&pdev->dev, 4096, &dma_addr, GFP_KERNEL);
	if (!mem)
		return -ENOMEM;

	res = nvme_identify(dev, 0, 1, dma_addr);
	if (res) {
		dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
		res = -EIO;
		goto out;
		dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);
		return -EIO;
	}

	ctrl = mem;
@@ -2191,6 +2335,7 @@ static int nvme_dev_add(struct nvme_dev *dev)
		} else
			dev->max_hw_sectors = max_hw_sectors;
	}
	dma_free_coherent(&dev->pci_dev->dev, 4096, mem, dma_addr);

	dev->tagset.ops = &nvme_mq_ops;
	dev->tagset.nr_hw_queues = dev->online_queues - 1;
@@ -2203,33 +2348,12 @@ static int nvme_dev_add(struct nvme_dev *dev)
	dev->tagset.driver_data = dev;

	if (blk_mq_alloc_tag_set(&dev->tagset))
		goto out;

	id_ns = mem;
	for (i = 1; i <= nn; i++) {
		res = nvme_identify(dev, i, 0, dma_addr);
		if (res)
			continue;

		if (id_ns->ncap == 0)
			continue;
		return 0;

		res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
							dma_addr + 4096, NULL);
		if (res)
			memset(mem + 4096, 0, 4096);
	for (i = 1; i <= nn; i++)
		nvme_alloc_ns(dev, i);

		ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
		if (ns)
			list_add_tail(&ns->list, &dev->namespaces);
	}
	list_for_each_entry(ns, &dev->namespaces, list)
		add_disk(ns->disk);
	res = 0;

 out:
	dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
	return res;
	return 0;
}

static int nvme_dev_map(struct nvme_dev *dev)
@@ -2358,8 +2482,6 @@ static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
static void nvme_del_queue_end(struct nvme_queue *nvmeq)
{
	struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;

	nvme_clear_queue(nvmeq);
	nvme_put_dq(dq);
}

@@ -2502,7 +2624,6 @@ static void nvme_dev_shutdown(struct nvme_dev *dev)
	int i;
	u32 csts = -1;

	dev->initialized = 0;
	nvme_dev_list_remove(dev);

	if (dev->bar) {
@@ -2513,7 +2634,6 @@ static void nvme_dev_shutdown(struct nvme_dev *dev)
		for (i = dev->queue_count - 1; i >= 0; i--) {
			struct nvme_queue *nvmeq = dev->queues[i];
			nvme_suspend_queue(nvmeq);
			nvme_clear_queue(nvmeq);
		}
	} else {
		nvme_disable_io_queues(dev);
@@ -2521,6 +2641,9 @@ static void nvme_dev_shutdown(struct nvme_dev *dev)
		nvme_disable_queue(dev, 0);
	}
	nvme_dev_unmap(dev);

	for (i = dev->queue_count - 1; i >= 0; i--)
		nvme_clear_queue(dev->queues[i]);
}

static void nvme_dev_remove(struct nvme_dev *dev)
@@ -2528,8 +2651,11 @@ static void nvme_dev_remove(struct nvme_dev *dev)
	struct nvme_ns *ns;

	list_for_each_entry(ns, &dev->namespaces, list) {
		if (ns->disk->flags & GENHD_FL_UP)
		if (ns->disk->flags & GENHD_FL_UP) {
			if (ns->disk->integrity)
				blk_integrity_unregister(ns->disk);
			del_gendisk(ns->disk);
		}
		if (!blk_queue_dying(ns->queue)) {
			blk_mq_abort_requeue_list(ns->queue);
			blk_cleanup_queue(ns->queue);
@@ -2611,6 +2737,7 @@ static void nvme_free_dev(struct kref *kref)
	struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);

	pci_dev_put(dev->pci_dev);
	put_device(dev->device);
	nvme_free_namespaces(dev);
	nvme_release_instance(dev);
	blk_mq_free_tag_set(&dev->tagset);
@@ -2622,11 +2749,27 @@ static void nvme_free_dev(struct kref *kref)

static int nvme_dev_open(struct inode *inode, struct file *f)
{
	struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
								miscdev);
	kref_get(&dev->kref);
	struct nvme_dev *dev;
	int instance = iminor(inode);
	int ret = -ENODEV;

	spin_lock(&dev_list_lock);
	list_for_each_entry(dev, &dev_list, node) {
		if (dev->instance == instance) {
			if (!dev->admin_q) {
				ret = -EWOULDBLOCK;
				break;
			}
			if (!kref_get_unless_zero(&dev->kref))
				break;
			f->private_data = dev;
	return 0;
			ret = 0;
			break;
		}
	}
	spin_unlock(&dev_list_lock);

	return ret;
}

static int nvme_dev_release(struct inode *inode, struct file *f)
@@ -2768,7 +2911,6 @@ static int nvme_dev_resume(struct nvme_dev *dev)
		nvme_unfreeze_queues(dev);
		nvme_set_irq_hints(dev);
	}
	dev->initialized = 1;
	return 0;
}

@@ -2799,6 +2941,7 @@ static void nvme_reset_workfn(struct work_struct *work)
	dev->reset_workfn(work);
}

static void nvme_async_probe(struct work_struct *work);
static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
	int node, result = -ENOMEM;
@@ -2834,37 +2977,20 @@ static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
		goto release;

	kref_init(&dev->kref);
	result = nvme_dev_start(dev);
	if (result)
	dev->device = device_create(nvme_class, &pdev->dev,
				MKDEV(nvme_char_major, dev->instance),
				dev, "nvme%d", dev->instance);
	if (IS_ERR(dev->device)) {
		result = PTR_ERR(dev->device);
		goto release_pools;
	}
	get_device(dev->device);

	if (dev->online_queues > 1)
		result = nvme_dev_add(dev);
	if (result)
		goto shutdown;

	scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
	dev->miscdev.minor = MISC_DYNAMIC_MINOR;
	dev->miscdev.parent = &pdev->dev;
	dev->miscdev.name = dev->name;
	dev->miscdev.fops = &nvme_dev_fops;
	result = misc_register(&dev->miscdev);
	if (result)
		goto remove;

	nvme_set_irq_hints(dev);

	dev->initialized = 1;
	INIT_WORK(&dev->probe_work, nvme_async_probe);
	schedule_work(&dev->probe_work);
	return 0;

 remove:
	nvme_dev_remove(dev);
	nvme_dev_remove_admin(dev);
	nvme_free_namespaces(dev);
 shutdown:
	nvme_dev_shutdown(dev);
 release_pools:
	nvme_free_queues(dev, 0);
	nvme_release_prp_pools(dev);
 release:
	nvme_release_instance(dev);
@@ -2877,6 +3003,29 @@ static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
	return result;
}

static void nvme_async_probe(struct work_struct *work)
{
	struct nvme_dev *dev = container_of(work, struct nvme_dev, probe_work);
	int result;

	result = nvme_dev_start(dev);
	if (result)
		goto reset;

	if (dev->online_queues > 1)
		result = nvme_dev_add(dev);
	if (result)
		goto reset;

	nvme_set_irq_hints(dev);
	return;
 reset:
	if (!work_busy(&dev->reset_work)) {
		dev->reset_workfn = nvme_reset_failed_dev;
		queue_work(nvme_workq, &dev->reset_work);
	}
}

static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
{
	struct nvme_dev *dev = pci_get_drvdata(pdev);
@@ -2902,11 +3051,12 @@ static void nvme_remove(struct pci_dev *pdev)
	spin_unlock(&dev_list_lock);

	pci_set_drvdata(pdev, NULL);
	flush_work(&dev->probe_work);
	flush_work(&dev->reset_work);
	misc_deregister(&dev->miscdev);
	nvme_dev_shutdown(dev);
	nvme_dev_remove(dev);
	nvme_dev_remove_admin(dev);
	device_destroy(nvme_class, MKDEV(nvme_char_major, dev->instance));
	nvme_free_queues(dev, 0);
	nvme_release_prp_pools(dev);
	kref_put(&dev->kref, nvme_free_dev);
@@ -2990,11 +3140,26 @@ static int __init nvme_init(void)
	else if (result > 0)
		nvme_major = result;

	result = __register_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme",
							&nvme_dev_fops);
	if (result < 0)
		goto unregister_blkdev;
	else if (result > 0)
		nvme_char_major = result;

	nvme_class = class_create(THIS_MODULE, "nvme");
	if (!nvme_class)
		goto unregister_chrdev;

	result = pci_register_driver(&nvme_driver);
	if (result)
		goto unregister_blkdev;
		goto destroy_class;
	return 0;

 destroy_class:
	class_destroy(nvme_class);
 unregister_chrdev:
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
 unregister_blkdev:
	unregister_blkdev(nvme_major, "nvme");
 kill_workq:
@@ -3005,9 +3170,10 @@ static int __init nvme_init(void)
static void __exit nvme_exit(void)
{
	pci_unregister_driver(&nvme_driver);
	unregister_hotcpu_notifier(&nvme_nb);
	unregister_blkdev(nvme_major, "nvme");
	destroy_workqueue(nvme_workq);
	class_destroy(nvme_class);
	__unregister_chrdev(nvme_char_major, 0, NVME_MINORS, "nvme");
	BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
	_nvme_check_size();
}
+54 −42

File changed.

Preview size limit exceeded, changes collapsed.

+4 −5
Original line number Diff line number Diff line
@@ -17,7 +17,6 @@

#include <uapi/linux/nvme.h>
#include <linux/pci.h>
#include <linux/miscdevice.h>
#include <linux/kref.h>
#include <linux/blk-mq.h>

@@ -62,8 +61,6 @@ enum {
	NVME_CSTS_SHST_MASK	= 3 << 2,
};

#define NVME_VS(major, minor)	(major << 16 | minor)

extern unsigned char nvme_io_timeout;
#define NVME_IO_TIMEOUT	(nvme_io_timeout * HZ)

@@ -91,9 +88,10 @@ struct nvme_dev {
	struct nvme_bar __iomem *bar;
	struct list_head namespaces;
	struct kref kref;
	struct miscdevice miscdev;
	struct device *device;
	work_func_t reset_workfn;
	struct work_struct reset_work;
	struct work_struct probe_work;
	char name[12];
	char serial[20];
	char model[40];
@@ -105,7 +103,6 @@ struct nvme_dev {
	u16 abort_limit;
	u8 event_limit;
	u8 vwc;
	u8 initialized;
};

/*
@@ -121,6 +118,7 @@ struct nvme_ns {
	unsigned ns_id;
	int lba_shift;
	int ms;
	int pi_type;
	u64 mode_select_num_blocks;
	u32 mode_select_block_len;
};
@@ -138,6 +136,7 @@ struct nvme_iod {
	int nents;		/* Used in scatterlist */
	int length;		/* Of data, in bytes */
	dma_addr_t first_dma;
	struct scatterlist meta_sg[1]; /* metadata requires single contiguous buffer */
	struct scatterlist sg[0];
};

+25 −1
Original line number Diff line number Diff line
@@ -115,7 +115,13 @@ struct nvme_id_ns {
	__le16			nawun;
	__le16			nawupf;
	__le16			nacwu;
	__u8			rsvd40[80];
	__le16			nabsn;
	__le16			nabo;
	__le16			nabspf;
	__u16			rsvd46;
	__le64			nvmcap[2];
	__u8			rsvd64[40];
	__u8			nguid[16];
	__u8			eui64[8];
	struct nvme_lbaf	lbaf[16];
	__u8			rsvd192[192];
@@ -124,10 +130,22 @@ struct nvme_id_ns {

enum {
	NVME_NS_FEAT_THIN	= 1 << 0,
	NVME_NS_FLBAS_LBA_MASK	= 0xf,
	NVME_NS_FLBAS_META_EXT	= 0x10,
	NVME_LBAF_RP_BEST	= 0,
	NVME_LBAF_RP_BETTER	= 1,
	NVME_LBAF_RP_GOOD	= 2,
	NVME_LBAF_RP_DEGRADED	= 3,
	NVME_NS_DPC_PI_LAST	= 1 << 4,
	NVME_NS_DPC_PI_FIRST	= 1 << 3,
	NVME_NS_DPC_PI_TYPE3	= 1 << 2,
	NVME_NS_DPC_PI_TYPE2	= 1 << 1,
	NVME_NS_DPC_PI_TYPE1	= 1 << 0,
	NVME_NS_DPS_PI_FIRST	= 1 << 3,
	NVME_NS_DPS_PI_MASK	= 0x7,
	NVME_NS_DPS_PI_TYPE1	= 1,
	NVME_NS_DPS_PI_TYPE2	= 2,
	NVME_NS_DPS_PI_TYPE3	= 3,
};

struct nvme_smart_log {
@@ -261,6 +279,10 @@ enum {
	NVME_RW_DSM_LATENCY_LOW		= 3 << 4,
	NVME_RW_DSM_SEQ_REQ		= 1 << 6,
	NVME_RW_DSM_COMPRESSED		= 1 << 7,
	NVME_RW_PRINFO_PRCHK_REF	= 1 << 10,
	NVME_RW_PRINFO_PRCHK_APP	= 1 << 11,
	NVME_RW_PRINFO_PRCHK_GUARD	= 1 << 12,
	NVME_RW_PRINFO_PRACT		= 1 << 13,
};

struct nvme_dsm_cmd {
@@ -549,6 +571,8 @@ struct nvme_passthru_cmd {
	__u32	result;
};

#define NVME_VS(major, minor) (((major) << 16) | ((minor) << 8))

#define nvme_admin_cmd nvme_passthru_cmd

#define NVME_IOCTL_ID		_IO('N', 0x40)