Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit de2d12c7 authored by Laurent Pinchart's avatar Laurent Pinchart
Browse files

clocksource: sh_tmu: Split channel fields from sh_tmu_priv



Create a new sh_tmu_channel structure to hold the channel-specific
field in preparation for multiple channels per device support.

Signed-off-by: default avatarLaurent Pinchart <laurent.pinchart+renesas@ideasonboard.com>
parent 1c56cf6b
Loading
Loading
Loading
Loading
+125 −110
Original line number Original line Diff line number Diff line
@@ -35,11 +35,13 @@
#include <linux/pm_domain.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/pm_runtime.h>


struct sh_tmu_priv {
struct sh_tmu_priv;
	void __iomem *mapbase;

	struct clk *clk;
struct sh_tmu_channel {
	struct sh_tmu_priv *tmu;

	int irq;
	int irq;
	struct platform_device *pdev;

	unsigned long rate;
	unsigned long rate;
	unsigned long periodic;
	unsigned long periodic;
	struct clock_event_device ced;
	struct clock_event_device ced;
@@ -48,6 +50,15 @@ struct sh_tmu_priv {
	unsigned int enable_count;
	unsigned int enable_count;
};
};


struct sh_tmu_priv {
	struct platform_device *pdev;

	void __iomem *mapbase;
	struct clk *clk;

	struct sh_tmu_channel channel;
};

static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
static DEFINE_RAW_SPINLOCK(sh_tmu_lock);


#define TSTR -1 /* shared register */
#define TSTR -1 /* shared register */
@@ -55,10 +66,10 @@ static DEFINE_RAW_SPINLOCK(sh_tmu_lock);
#define TCNT 1 /* channel register */
#define TCNT 1 /* channel register */
#define TCR 2 /* channel register */
#define TCR 2 /* channel register */


static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
static inline unsigned long sh_tmu_read(struct sh_tmu_channel *ch, int reg_nr)
{
{
	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
	struct sh_timer_config *cfg = ch->tmu->pdev->dev.platform_data;
	void __iomem *base = p->mapbase;
	void __iomem *base = ch->tmu->mapbase;
	unsigned long offs;
	unsigned long offs;


	if (reg_nr == TSTR)
	if (reg_nr == TSTR)
@@ -72,11 +83,11 @@ static inline unsigned long sh_tmu_read(struct sh_tmu_priv *p, int reg_nr)
		return ioread32(base + offs);
		return ioread32(base + offs);
}
}


static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
static inline void sh_tmu_write(struct sh_tmu_channel *ch, int reg_nr,
				unsigned long value)
				unsigned long value)
{
{
	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
	struct sh_timer_config *cfg = ch->tmu->pdev->dev.platform_data;
	void __iomem *base = p->mapbase;
	void __iomem *base = ch->tmu->mapbase;
	unsigned long offs;
	unsigned long offs;


	if (reg_nr == TSTR) {
	if (reg_nr == TSTR) {
@@ -92,152 +103,152 @@ static inline void sh_tmu_write(struct sh_tmu_priv *p, int reg_nr,
		iowrite32(value, base + offs);
		iowrite32(value, base + offs);
}
}


static void sh_tmu_start_stop_ch(struct sh_tmu_priv *p, int start)
static void sh_tmu_start_stop_ch(struct sh_tmu_channel *ch, int start)
{
{
	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
	struct sh_timer_config *cfg = ch->tmu->pdev->dev.platform_data;
	unsigned long flags, value;
	unsigned long flags, value;


	/* start stop register shared by multiple timer channels */
	/* start stop register shared by multiple timer channels */
	raw_spin_lock_irqsave(&sh_tmu_lock, flags);
	raw_spin_lock_irqsave(&sh_tmu_lock, flags);
	value = sh_tmu_read(p, TSTR);
	value = sh_tmu_read(ch, TSTR);


	if (start)
	if (start)
		value |= 1 << cfg->timer_bit;
		value |= 1 << cfg->timer_bit;
	else
	else
		value &= ~(1 << cfg->timer_bit);
		value &= ~(1 << cfg->timer_bit);


	sh_tmu_write(p, TSTR, value);
	sh_tmu_write(ch, TSTR, value);
	raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
	raw_spin_unlock_irqrestore(&sh_tmu_lock, flags);
}
}


static int __sh_tmu_enable(struct sh_tmu_priv *p)
static int __sh_tmu_enable(struct sh_tmu_channel *ch)
{
{
	int ret;
	int ret;


	/* enable clock */
	/* enable clock */
	ret = clk_enable(p->clk);
	ret = clk_enable(ch->tmu->clk);
	if (ret) {
	if (ret) {
		dev_err(&p->pdev->dev, "cannot enable clock\n");
		dev_err(&ch->tmu->pdev->dev, "cannot enable clock\n");
		return ret;
		return ret;
	}
	}


	/* make sure channel is disabled */
	/* make sure channel is disabled */
	sh_tmu_start_stop_ch(p, 0);
	sh_tmu_start_stop_ch(ch, 0);


	/* maximum timeout */
	/* maximum timeout */
	sh_tmu_write(p, TCOR, 0xffffffff);
	sh_tmu_write(ch, TCOR, 0xffffffff);
	sh_tmu_write(p, TCNT, 0xffffffff);
	sh_tmu_write(ch, TCNT, 0xffffffff);


	/* configure channel to parent clock / 4, irq off */
	/* configure channel to parent clock / 4, irq off */
	p->rate = clk_get_rate(p->clk) / 4;
	ch->rate = clk_get_rate(ch->tmu->clk) / 4;
	sh_tmu_write(p, TCR, 0x0000);
	sh_tmu_write(ch, TCR, 0x0000);


	/* enable channel */
	/* enable channel */
	sh_tmu_start_stop_ch(p, 1);
	sh_tmu_start_stop_ch(ch, 1);


	return 0;
	return 0;
}
}


static int sh_tmu_enable(struct sh_tmu_priv *p)
static int sh_tmu_enable(struct sh_tmu_channel *ch)
{
{
	if (p->enable_count++ > 0)
	if (ch->enable_count++ > 0)
		return 0;
		return 0;


	pm_runtime_get_sync(&p->pdev->dev);
	pm_runtime_get_sync(&ch->tmu->pdev->dev);
	dev_pm_syscore_device(&p->pdev->dev, true);
	dev_pm_syscore_device(&ch->tmu->pdev->dev, true);


	return __sh_tmu_enable(p);
	return __sh_tmu_enable(ch);
}
}


static void __sh_tmu_disable(struct sh_tmu_priv *p)
static void __sh_tmu_disable(struct sh_tmu_channel *ch)
{
{
	/* disable channel */
	/* disable channel */
	sh_tmu_start_stop_ch(p, 0);
	sh_tmu_start_stop_ch(ch, 0);


	/* disable interrupts in TMU block */
	/* disable interrupts in TMU block */
	sh_tmu_write(p, TCR, 0x0000);
	sh_tmu_write(ch, TCR, 0x0000);


	/* stop clock */
	/* stop clock */
	clk_disable(p->clk);
	clk_disable(ch->tmu->clk);
}
}


static void sh_tmu_disable(struct sh_tmu_priv *p)
static void sh_tmu_disable(struct sh_tmu_channel *ch)
{
{
	if (WARN_ON(p->enable_count == 0))
	if (WARN_ON(ch->enable_count == 0))
		return;
		return;


	if (--p->enable_count > 0)
	if (--ch->enable_count > 0)
		return;
		return;


	__sh_tmu_disable(p);
	__sh_tmu_disable(ch);


	dev_pm_syscore_device(&p->pdev->dev, false);
	dev_pm_syscore_device(&ch->tmu->pdev->dev, false);
	pm_runtime_put(&p->pdev->dev);
	pm_runtime_put(&ch->tmu->pdev->dev);
}
}


static void sh_tmu_set_next(struct sh_tmu_priv *p, unsigned long delta,
static void sh_tmu_set_next(struct sh_tmu_channel *ch, unsigned long delta,
			    int periodic)
			    int periodic)
{
{
	/* stop timer */
	/* stop timer */
	sh_tmu_start_stop_ch(p, 0);
	sh_tmu_start_stop_ch(ch, 0);


	/* acknowledge interrupt */
	/* acknowledge interrupt */
	sh_tmu_read(p, TCR);
	sh_tmu_read(ch, TCR);


	/* enable interrupt */
	/* enable interrupt */
	sh_tmu_write(p, TCR, 0x0020);
	sh_tmu_write(ch, TCR, 0x0020);


	/* reload delta value in case of periodic timer */
	/* reload delta value in case of periodic timer */
	if (periodic)
	if (periodic)
		sh_tmu_write(p, TCOR, delta);
		sh_tmu_write(ch, TCOR, delta);
	else
	else
		sh_tmu_write(p, TCOR, 0xffffffff);
		sh_tmu_write(ch, TCOR, 0xffffffff);


	sh_tmu_write(p, TCNT, delta);
	sh_tmu_write(ch, TCNT, delta);


	/* start timer */
	/* start timer */
	sh_tmu_start_stop_ch(p, 1);
	sh_tmu_start_stop_ch(ch, 1);
}
}


static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
static irqreturn_t sh_tmu_interrupt(int irq, void *dev_id)
{
{
	struct sh_tmu_priv *p = dev_id;
	struct sh_tmu_channel *ch = dev_id;


	/* disable or acknowledge interrupt */
	/* disable or acknowledge interrupt */
	if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT)
	if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT)
		sh_tmu_write(p, TCR, 0x0000);
		sh_tmu_write(ch, TCR, 0x0000);
	else
	else
		sh_tmu_write(p, TCR, 0x0020);
		sh_tmu_write(ch, TCR, 0x0020);


	/* notify clockevent layer */
	/* notify clockevent layer */
	p->ced.event_handler(&p->ced);
	ch->ced.event_handler(&ch->ced);
	return IRQ_HANDLED;
	return IRQ_HANDLED;
}
}


static struct sh_tmu_priv *cs_to_sh_tmu(struct clocksource *cs)
static struct sh_tmu_channel *cs_to_sh_tmu(struct clocksource *cs)
{
{
	return container_of(cs, struct sh_tmu_priv, cs);
	return container_of(cs, struct sh_tmu_channel, cs);
}
}


static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
static cycle_t sh_tmu_clocksource_read(struct clocksource *cs)
{
{
	struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);


	return sh_tmu_read(p, TCNT) ^ 0xffffffff;
	return sh_tmu_read(ch, TCNT) ^ 0xffffffff;
}
}


static int sh_tmu_clocksource_enable(struct clocksource *cs)
static int sh_tmu_clocksource_enable(struct clocksource *cs)
{
{
	struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);
	int ret;
	int ret;


	if (WARN_ON(p->cs_enabled))
	if (WARN_ON(ch->cs_enabled))
		return 0;
		return 0;


	ret = sh_tmu_enable(p);
	ret = sh_tmu_enable(ch);
	if (!ret) {
	if (!ret) {
		__clocksource_updatefreq_hz(cs, p->rate);
		__clocksource_updatefreq_hz(cs, ch->rate);
		p->cs_enabled = true;
		ch->cs_enabled = true;
	}
	}


	return ret;
	return ret;
@@ -245,45 +256,45 @@ static int sh_tmu_clocksource_enable(struct clocksource *cs)


static void sh_tmu_clocksource_disable(struct clocksource *cs)
static void sh_tmu_clocksource_disable(struct clocksource *cs)
{
{
	struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);


	if (WARN_ON(!p->cs_enabled))
	if (WARN_ON(!ch->cs_enabled))
		return;
		return;


	sh_tmu_disable(p);
	sh_tmu_disable(ch);
	p->cs_enabled = false;
	ch->cs_enabled = false;
}
}


static void sh_tmu_clocksource_suspend(struct clocksource *cs)
static void sh_tmu_clocksource_suspend(struct clocksource *cs)
{
{
	struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);


	if (!p->cs_enabled)
	if (!ch->cs_enabled)
		return;
		return;


	if (--p->enable_count == 0) {
	if (--ch->enable_count == 0) {
		__sh_tmu_disable(p);
		__sh_tmu_disable(ch);
		pm_genpd_syscore_poweroff(&p->pdev->dev);
		pm_genpd_syscore_poweroff(&ch->tmu->pdev->dev);
	}
	}
}
}


static void sh_tmu_clocksource_resume(struct clocksource *cs)
static void sh_tmu_clocksource_resume(struct clocksource *cs)
{
{
	struct sh_tmu_priv *p = cs_to_sh_tmu(cs);
	struct sh_tmu_channel *ch = cs_to_sh_tmu(cs);


	if (!p->cs_enabled)
	if (!ch->cs_enabled)
		return;
		return;


	if (p->enable_count++ == 0) {
	if (ch->enable_count++ == 0) {
		pm_genpd_syscore_poweron(&p->pdev->dev);
		pm_genpd_syscore_poweron(&ch->tmu->pdev->dev);
		__sh_tmu_enable(p);
		__sh_tmu_enable(ch);
	}
	}
}
}


static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
static int sh_tmu_register_clocksource(struct sh_tmu_channel *ch,
				       char *name, unsigned long rating)
				       char *name, unsigned long rating)
{
{
	struct clocksource *cs = &p->cs;
	struct clocksource *cs = &ch->cs;


	cs->name = name;
	cs->name = name;
	cs->rating = rating;
	cs->rating = rating;
@@ -295,43 +306,43 @@ static int sh_tmu_register_clocksource(struct sh_tmu_priv *p,
	cs->mask = CLOCKSOURCE_MASK(32);
	cs->mask = CLOCKSOURCE_MASK(32);
	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;


	dev_info(&p->pdev->dev, "used as clock source\n");
	dev_info(&ch->tmu->pdev->dev, "used as clock source\n");


	/* Register with dummy 1 Hz value, gets updated in ->enable() */
	/* Register with dummy 1 Hz value, gets updated in ->enable() */
	clocksource_register_hz(cs, 1);
	clocksource_register_hz(cs, 1);
	return 0;
	return 0;
}
}


static struct sh_tmu_priv *ced_to_sh_tmu(struct clock_event_device *ced)
static struct sh_tmu_channel *ced_to_sh_tmu(struct clock_event_device *ced)
{
{
	return container_of(ced, struct sh_tmu_priv, ced);
	return container_of(ced, struct sh_tmu_channel, ced);
}
}


static void sh_tmu_clock_event_start(struct sh_tmu_priv *p, int periodic)
static void sh_tmu_clock_event_start(struct sh_tmu_channel *ch, int periodic)
{
{
	struct clock_event_device *ced = &p->ced;
	struct clock_event_device *ced = &ch->ced;


	sh_tmu_enable(p);
	sh_tmu_enable(ch);


	clockevents_config(ced, p->rate);
	clockevents_config(ced, ch->rate);


	if (periodic) {
	if (periodic) {
		p->periodic = (p->rate + HZ/2) / HZ;
		ch->periodic = (ch->rate + HZ/2) / HZ;
		sh_tmu_set_next(p, p->periodic, 1);
		sh_tmu_set_next(ch, ch->periodic, 1);
	}
	}
}
}


static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
				    struct clock_event_device *ced)
				    struct clock_event_device *ced)
{
{
	struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);
	int disabled = 0;
	int disabled = 0;


	/* deal with old setting first */
	/* deal with old setting first */
	switch (ced->mode) {
	switch (ced->mode) {
	case CLOCK_EVT_MODE_PERIODIC:
	case CLOCK_EVT_MODE_PERIODIC:
	case CLOCK_EVT_MODE_ONESHOT:
	case CLOCK_EVT_MODE_ONESHOT:
		sh_tmu_disable(p);
		sh_tmu_disable(ch);
		disabled = 1;
		disabled = 1;
		break;
		break;
	default:
	default:
@@ -340,16 +351,18 @@ static void sh_tmu_clock_event_mode(enum clock_event_mode mode,


	switch (mode) {
	switch (mode) {
	case CLOCK_EVT_MODE_PERIODIC:
	case CLOCK_EVT_MODE_PERIODIC:
		dev_info(&p->pdev->dev, "used for periodic clock events\n");
		dev_info(&ch->tmu->pdev->dev,
		sh_tmu_clock_event_start(p, 1);
			 "used for periodic clock events\n");
		sh_tmu_clock_event_start(ch, 1);
		break;
		break;
	case CLOCK_EVT_MODE_ONESHOT:
	case CLOCK_EVT_MODE_ONESHOT:
		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
		dev_info(&ch->tmu->pdev->dev,
		sh_tmu_clock_event_start(p, 0);
			 "used for oneshot clock events\n");
		sh_tmu_clock_event_start(ch, 0);
		break;
		break;
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_UNUSED:
		if (!disabled)
		if (!disabled)
			sh_tmu_disable(p);
			sh_tmu_disable(ch);
		break;
		break;
	case CLOCK_EVT_MODE_SHUTDOWN:
	case CLOCK_EVT_MODE_SHUTDOWN:
	default:
	default:
@@ -360,29 +373,29 @@ static void sh_tmu_clock_event_mode(enum clock_event_mode mode,
static int sh_tmu_clock_event_next(unsigned long delta,
static int sh_tmu_clock_event_next(unsigned long delta,
				   struct clock_event_device *ced)
				   struct clock_event_device *ced)
{
{
	struct sh_tmu_priv *p = ced_to_sh_tmu(ced);
	struct sh_tmu_channel *ch = ced_to_sh_tmu(ced);


	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);


	/* program new delta value */
	/* program new delta value */
	sh_tmu_set_next(p, delta, 0);
	sh_tmu_set_next(ch, delta, 0);
	return 0;
	return 0;
}
}


static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
static void sh_tmu_clock_event_suspend(struct clock_event_device *ced)
{
{
	pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->pdev->dev);
	pm_genpd_syscore_poweroff(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
}
}


static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
static void sh_tmu_clock_event_resume(struct clock_event_device *ced)
{
{
	pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->pdev->dev);
	pm_genpd_syscore_poweron(&ced_to_sh_tmu(ced)->tmu->pdev->dev);
}
}


static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
static void sh_tmu_register_clockevent(struct sh_tmu_channel *ch,
				       char *name, unsigned long rating)
				       char *name, unsigned long rating)
{
{
	struct clock_event_device *ced = &p->ced;
	struct clock_event_device *ced = &ch->ced;
	int ret;
	int ret;


	memset(ced, 0, sizeof(*ced));
	memset(ced, 0, sizeof(*ced));
@@ -397,27 +410,28 @@ static void sh_tmu_register_clockevent(struct sh_tmu_priv *p,
	ced->suspend = sh_tmu_clock_event_suspend;
	ced->suspend = sh_tmu_clock_event_suspend;
	ced->resume = sh_tmu_clock_event_resume;
	ced->resume = sh_tmu_clock_event_resume;


	dev_info(&p->pdev->dev, "used for clock events\n");
	dev_info(&ch->tmu->pdev->dev, "used for clock events\n");


	clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);
	clockevents_config_and_register(ced, 1, 0x300, 0xffffffff);


	ret = request_irq(p->irq, sh_tmu_interrupt,
	ret = request_irq(ch->irq, sh_tmu_interrupt,
			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
			  dev_name(&p->pdev->dev), p);
			  dev_name(&ch->tmu->pdev->dev), ch);
	if (ret) {
	if (ret) {
		dev_err(&p->pdev->dev, "failed to request irq %d\n", p->irq);
		dev_err(&ch->tmu->pdev->dev, "failed to request irq %d\n",
			ch->irq);
		return;
		return;
	}
	}
}
}


static int sh_tmu_register(struct sh_tmu_priv *p, char *name,
static int sh_tmu_register(struct sh_tmu_channel *ch, char *name,
		    unsigned long clockevent_rating,
		    unsigned long clockevent_rating,
		    unsigned long clocksource_rating)
		    unsigned long clocksource_rating)
{
{
	if (clockevent_rating)
	if (clockevent_rating)
		sh_tmu_register_clockevent(p, name, clockevent_rating);
		sh_tmu_register_clockevent(ch, name, clockevent_rating);
	else if (clocksource_rating)
	else if (clocksource_rating)
		sh_tmu_register_clocksource(p, name, clocksource_rating);
		sh_tmu_register_clocksource(ch, name, clocksource_rating);


	return 0;
	return 0;
}
}
@@ -445,8 +459,8 @@ static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
		goto err0;
		goto err0;
	}
	}


	p->irq = platform_get_irq(p->pdev, 0);
	p->channel.irq = platform_get_irq(p->pdev, 0);
	if (p->irq < 0) {
	if (p->channel.irq < 0) {
		dev_err(&p->pdev->dev, "failed to get irq\n");
		dev_err(&p->pdev->dev, "failed to get irq\n");
		goto err0;
		goto err0;
	}
	}
@@ -470,10 +484,11 @@ static int sh_tmu_setup(struct sh_tmu_priv *p, struct platform_device *pdev)
	if (ret < 0)
	if (ret < 0)
		goto err2;
		goto err2;


	p->cs_enabled = false;
	p->channel.cs_enabled = false;
	p->enable_count = 0;
	p->channel.enable_count = 0;
	p->channel.tmu = p;


	ret = sh_tmu_register(p, (char *)dev_name(&p->pdev->dev),
	ret = sh_tmu_register(&p->channel, (char *)dev_name(&p->pdev->dev),
			      cfg->clockevent_rating,
			      cfg->clockevent_rating,
			      cfg->clocksource_rating);
			      cfg->clocksource_rating);
	if (ret < 0)
	if (ret < 0)