Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit dd9ee00e authored by Janis Schoetterl-Glausch's avatar Janis Schoetterl-Glausch Committed by Greg Kroah-Hartman
Browse files

KVM: s390: gaccess: Refactor access address range check



[ Upstream commit 7faa543df19bf62d4583a64d3902705747f2ad29 ]

Do not round down the first address to the page boundary, just translate
it normally, which gives the value we care about in the first place.
Given this, translating a single address is just the special case of
translating a range spanning a single page.

Make the output optional, so the function can be used to just check a
range.

Signed-off-by: default avatarJanis Schoetterl-Glausch <scgl@linux.ibm.com>
Reviewed-by: default avatarJanosch Frank <frankja@linux.ibm.com>
Reviewed-by: default avatarClaudio Imbrenda <imbrenda@linux.ibm.com>
Message-Id: <20211126164549.7046-3-scgl@linux.ibm.com>
Signed-off-by: default avatarJanosch Frank <frankja@linux.ibm.com>
Stable-dep-of: e8061f06185b ("KVM: s390: gaccess: Check if guest address is in memslot")
Signed-off-by: default avatarSasha Levin <sashal@kernel.org>
parent 8bf46a39
Loading
Loading
Loading
Loading
+69 −53
Original line number Original line Diff line number Diff line
@@ -794,35 +794,74 @@ static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
	return 1;
	return 1;
}
}


static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
/**
			    unsigned long *pages, unsigned long nr_pages,
 * guest_range_to_gpas() - Calculate guest physical addresses of page fragments
 * covering a logical range
 * @vcpu: virtual cpu
 * @ga: guest address, start of range
 * @ar: access register
 * @gpas: output argument, may be NULL
 * @len: length of range in bytes
 * @asce: address-space-control element to use for translation
 * @mode: access mode
 *
 * Translate a logical range to a series of guest absolute addresses,
 * such that the concatenation of page fragments starting at each gpa make up
 * the whole range.
 * The translation is performed as if done by the cpu for the given @asce, @ar,
 * @mode and state of the @vcpu.
 * If the translation causes an exception, its program interruption code is
 * returned and the &struct kvm_s390_pgm_info pgm member of @vcpu is modified
 * such that a subsequent call to kvm_s390_inject_prog_vcpu() will inject
 * a correct exception into the guest.
 * The resulting gpas are stored into @gpas, unless it is NULL.
 *
 * Note: All fragments except the first one start at the beginning of a page.
 *	 When deriving the boundaries of a fragment from a gpa, all but the last
 *	 fragment end at the end of the page.
 *
 * Return:
 * * 0		- success
 * * <0		- translation could not be performed, for example if  guest
 *		  memory could not be accessed
 * * >0		- an access exception occurred. In this case the returned value
 *		  is the program interruption code and the contents of pgm may
 *		  be used to inject an exception into the guest.
 */
static int guest_range_to_gpas(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
			       unsigned long *gpas, unsigned long len,
			       const union asce asce, enum gacc_mode mode)
			       const union asce asce, enum gacc_mode mode)
{
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	unsigned int offset = offset_in_page(ga);
	unsigned int fragment_len;
	int lap_enabled, rc = 0;
	int lap_enabled, rc = 0;
	enum prot_type prot;
	enum prot_type prot;
	unsigned long gpa;


	lap_enabled = low_address_protection_enabled(vcpu, asce);
	lap_enabled = low_address_protection_enabled(vcpu, asce);
	while (nr_pages) {
	while (min(PAGE_SIZE - offset, len) > 0) {
		fragment_len = min(PAGE_SIZE - offset, len);
		ga = kvm_s390_logical_to_effective(vcpu, ga);
		ga = kvm_s390_logical_to_effective(vcpu, ga);
		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
		if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
			return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
					 PROT_TYPE_LA);
					 PROT_TYPE_LA);
		ga &= PAGE_MASK;
		if (psw_bits(*psw).dat) {
		if (psw_bits(*psw).dat) {
			rc = guest_translate(vcpu, ga, pages, asce, mode, &prot);
			rc = guest_translate(vcpu, ga, &gpa, asce, mode, &prot);
			if (rc < 0)
			if (rc < 0)
				return rc;
				return rc;
		} else {
		} else {
			*pages = kvm_s390_real_to_abs(vcpu, ga);
			gpa = kvm_s390_real_to_abs(vcpu, ga);
			if (kvm_is_error_gpa(vcpu->kvm, *pages))
			if (kvm_is_error_gpa(vcpu->kvm, gpa))
				rc = PGM_ADDRESSING;
				rc = PGM_ADDRESSING;
		}
		}
		if (rc)
		if (rc)
			return trans_exc(vcpu, rc, ga, ar, mode, prot);
			return trans_exc(vcpu, rc, ga, ar, mode, prot);
		ga += PAGE_SIZE;
		if (gpas)
		pages++;
			*gpas++ = gpa;
		nr_pages--;
		offset = 0;
		ga += fragment_len;
		len -= fragment_len;
	}
	}
	return 0;
	return 0;
}
}
@@ -831,10 +870,10 @@ int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data,
		 unsigned long len, enum gacc_mode mode)
		 unsigned long len, enum gacc_mode mode)
{
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	unsigned long nr_pages, gpa, idx;
	unsigned long nr_pages, idx;
	unsigned long pages_array[2];
	unsigned long gpa_array[2];
	unsigned int fragment_len;
	unsigned int fragment_len;
	unsigned long *pages;
	unsigned long *gpas;
	int need_ipte_lock;
	int need_ipte_lock;
	union asce asce;
	union asce asce;
	int rc;
	int rc;
@@ -846,30 +885,28 @@ int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data,
	if (rc)
	if (rc)
		return rc;
		return rc;
	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
	nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
	pages = pages_array;
	gpas = gpa_array;
	if (nr_pages > ARRAY_SIZE(pages_array))
	if (nr_pages > ARRAY_SIZE(gpa_array))
		pages = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
		gpas = vmalloc(array_size(nr_pages, sizeof(unsigned long)));
	if (!pages)
	if (!gpas)
		return -ENOMEM;
		return -ENOMEM;
	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
	need_ipte_lock = psw_bits(*psw).dat && !asce.r;
	if (need_ipte_lock)
	if (need_ipte_lock)
		ipte_lock(vcpu);
		ipte_lock(vcpu);
	rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
	rc = guest_range_to_gpas(vcpu, ga, ar, gpas, len, asce, mode);
	for (idx = 0; idx < nr_pages && !rc; idx++) {
	for (idx = 0; idx < nr_pages && !rc; idx++) {
		gpa = pages[idx] + offset_in_page(ga);
		fragment_len = min(PAGE_SIZE - offset_in_page(gpas[idx]), len);
		fragment_len = min(PAGE_SIZE - offset_in_page(gpa), len);
		if (mode == GACC_STORE)
		if (mode == GACC_STORE)
			rc = kvm_write_guest(vcpu->kvm, gpa, data, fragment_len);
			rc = kvm_write_guest(vcpu->kvm, gpas[idx], data, fragment_len);
		else
		else
			rc = kvm_read_guest(vcpu->kvm, gpa, data, fragment_len);
			rc = kvm_read_guest(vcpu->kvm, gpas[idx], data, fragment_len);
		len -= fragment_len;
		len -= fragment_len;
		ga += fragment_len;
		data += fragment_len;
		data += fragment_len;
	}
	}
	if (need_ipte_lock)
	if (need_ipte_lock)
		ipte_unlock(vcpu);
		ipte_unlock(vcpu);
	if (nr_pages > ARRAY_SIZE(pages_array))
	if (nr_pages > ARRAY_SIZE(gpa_array))
		vfree(pages);
		vfree(gpas);
	return rc;
	return rc;
}
}


@@ -906,8 +943,6 @@ int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
			    unsigned long *gpa, enum gacc_mode mode)
			    unsigned long *gpa, enum gacc_mode mode)
{
{
	psw_t *psw = &vcpu->arch.sie_block->gpsw;
	enum prot_type prot;
	union asce asce;
	union asce asce;
	int rc;
	int rc;


@@ -915,23 +950,7 @@ int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
	if (rc)
	if (rc)
		return rc;
		return rc;
	if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
	return guest_range_to_gpas(vcpu, gva, ar, gpa, 1, asce, mode);
		if (mode == GACC_STORE)
			return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
					 mode, PROT_TYPE_LA);
	}

	if (psw_bits(*psw).dat && !asce.r) {	/* Use DAT? */
		rc = guest_translate(vcpu, gva, gpa, asce, mode, &prot);
		if (rc > 0)
			return trans_exc(vcpu, rc, gva, 0, mode, prot);
	} else {
		*gpa = kvm_s390_real_to_abs(vcpu, gva);
		if (kvm_is_error_gpa(vcpu->kvm, *gpa))
			return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
	}

	return rc;
}
}


/**
/**
@@ -940,17 +959,14 @@ int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
		    unsigned long length, enum gacc_mode mode)
		    unsigned long length, enum gacc_mode mode)
{
{
	unsigned long gpa;
	union asce asce;
	unsigned long currlen;
	int rc = 0;
	int rc = 0;


	rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
	if (rc)
		return rc;
	ipte_lock(vcpu);
	ipte_lock(vcpu);
	while (length > 0 && !rc) {
	rc = guest_range_to_gpas(vcpu, gva, ar, NULL, length, asce, mode);
		currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
		rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
		gva += currlen;
		length -= currlen;
	}
	ipte_unlock(vcpu);
	ipte_unlock(vcpu);


	return rc;
	return rc;