Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 6dd7a82c authored by Anton Blanchard's avatar Anton Blanchard Committed by Herbert Xu
Browse files

crypto: powerpc - Add POWER8 optimised crc32c



Use the vector polynomial multiply-sum instructions in POWER8 to
speed up crc32c.

This is just over 41x faster than the slice-by-8 method that it
replaces. Measurements on a 4.1 GHz POWER8 show it sustaining
52 GiB/sec.

A simple btrfs write performance test:

    dd if=/dev/zero of=/mnt/tmpfile bs=1M count=4096
    sync

is over 3.7x faster.

Signed-off-by: default avatarAnton Blanchard <anton@samba.org>
Signed-off-by: default avatarHerbert Xu <herbert@gondor.apana.org.au>
parent 151f2511
Loading
Loading
Loading
Loading
+2 −0
Original line number Diff line number Diff line
@@ -9,9 +9,11 @@ obj-$(CONFIG_CRYPTO_MD5_PPC) += md5-ppc.o
obj-$(CONFIG_CRYPTO_SHA1_PPC) += sha1-powerpc.o
obj-$(CONFIG_CRYPTO_SHA1_PPC_SPE) += sha1-ppc-spe.o
obj-$(CONFIG_CRYPTO_SHA256_PPC_SPE) += sha256-ppc-spe.o
obj-$(CONFIG_CRYPT_CRC32C_VPMSUM) += crc32c-vpmsum.o

aes-ppc-spe-y := aes-spe-core.o aes-spe-keys.o aes-tab-4k.o aes-spe-modes.o aes-spe-glue.o
md5-ppc-y := md5-asm.o md5-glue.o
sha1-powerpc-y := sha1-powerpc-asm.o sha1.o
sha1-ppc-spe-y := sha1-spe-asm.o sha1-spe-glue.o
sha256-ppc-spe-y := sha256-spe-asm.o sha256-spe-glue.o
crc32c-vpmsum-y := crc32c-vpmsum_asm.o crc32c-vpmsum_glue.o
+1553 −0

File added.

Preview size limit exceeded, changes collapsed.

+167 −0
Original line number Diff line number Diff line
#include <linux/crc32.h>
#include <crypto/internal/hash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <asm/switch_to.h>

#define CHKSUM_BLOCK_SIZE	1
#define CHKSUM_DIGEST_SIZE	4

#define VMX_ALIGN		16
#define VMX_ALIGN_MASK		(VMX_ALIGN-1)

#define VECTOR_BREAKPOINT	512

u32 __crc32c_vpmsum(u32 crc, unsigned char const *p, size_t len);

static u32 crc32c_vpmsum(u32 crc, unsigned char const *p, size_t len)
{
	unsigned int prealign;
	unsigned int tail;

	if (len < (VECTOR_BREAKPOINT + VMX_ALIGN) || in_interrupt())
		return __crc32c_le(crc, p, len);

	if ((unsigned long)p & VMX_ALIGN_MASK) {
		prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK);
		crc = __crc32c_le(crc, p, prealign);
		len -= prealign;
		p += prealign;
	}

	if (len & ~VMX_ALIGN_MASK) {
		pagefault_disable();
		enable_kernel_altivec();
		crc = __crc32c_vpmsum(crc, p, len & ~VMX_ALIGN_MASK);
		pagefault_enable();
	}

	tail = len & VMX_ALIGN_MASK;
	if (tail) {
		p += len & ~VMX_ALIGN_MASK;
		crc = __crc32c_le(crc, p, tail);
	}

	return crc;
}

static int crc32c_vpmsum_cra_init(struct crypto_tfm *tfm)
{
	u32 *key = crypto_tfm_ctx(tfm);

	*key = 0;

	return 0;
}

/*
 * Setting the seed allows arbitrary accumulators and flexible XOR policy
 * If your algorithm starts with ~0, then XOR with ~0 before you set
 * the seed.
 */
static int crc32c_vpmsum_setkey(struct crypto_shash *hash, const u8 *key,
			       unsigned int keylen)
{
	u32 *mctx = crypto_shash_ctx(hash);

	if (keylen != sizeof(u32)) {
		crypto_shash_set_flags(hash, CRYPTO_TFM_RES_BAD_KEY_LEN);
		return -EINVAL;
	}
	*mctx = le32_to_cpup((__le32 *)key);
	return 0;
}

static int crc32c_vpmsum_init(struct shash_desc *desc)
{
	u32 *mctx = crypto_shash_ctx(desc->tfm);
	u32 *crcp = shash_desc_ctx(desc);

	*crcp = *mctx;

	return 0;
}

static int crc32c_vpmsum_update(struct shash_desc *desc, const u8 *data,
			       unsigned int len)
{
	u32 *crcp = shash_desc_ctx(desc);

	*crcp = crc32c_vpmsum(*crcp, data, len);

	return 0;
}

static int __crc32c_vpmsum_finup(u32 *crcp, const u8 *data, unsigned int len,
				u8 *out)
{
	*(__le32 *)out = ~cpu_to_le32(crc32c_vpmsum(*crcp, data, len));

	return 0;
}

static int crc32c_vpmsum_finup(struct shash_desc *desc, const u8 *data,
			      unsigned int len, u8 *out)
{
	return __crc32c_vpmsum_finup(shash_desc_ctx(desc), data, len, out);
}

static int crc32c_vpmsum_final(struct shash_desc *desc, u8 *out)
{
	u32 *crcp = shash_desc_ctx(desc);

	*(__le32 *)out = ~cpu_to_le32p(crcp);

	return 0;
}

static int crc32c_vpmsum_digest(struct shash_desc *desc, const u8 *data,
			       unsigned int len, u8 *out)
{
	return __crc32c_vpmsum_finup(crypto_shash_ctx(desc->tfm), data, len,
				     out);
}

static struct shash_alg alg = {
	.setkey		= crc32c_vpmsum_setkey,
	.init		= crc32c_vpmsum_init,
	.update		= crc32c_vpmsum_update,
	.final		= crc32c_vpmsum_final,
	.finup		= crc32c_vpmsum_finup,
	.digest		= crc32c_vpmsum_digest,
	.descsize	= sizeof(u32),
	.digestsize	= CHKSUM_DIGEST_SIZE,
	.base		= {
		.cra_name		= "crc32c",
		.cra_driver_name	= "crc32c-vpmsum",
		.cra_priority		= 200,
		.cra_blocksize		= CHKSUM_BLOCK_SIZE,
		.cra_ctxsize		= sizeof(u32),
		.cra_module		= THIS_MODULE,
		.cra_init		= crc32c_vpmsum_cra_init,
	}
};

static int __init crc32c_vpmsum_mod_init(void)
{
	if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		return -ENODEV;

	return crypto_register_shash(&alg);
}

static void __exit crc32c_vpmsum_mod_fini(void)
{
	crypto_unregister_shash(&alg);
}

module_init(crc32c_vpmsum_mod_init);
module_exit(crc32c_vpmsum_mod_fini);

MODULE_AUTHOR("Anton Blanchard <anton@samba.org>");
MODULE_DESCRIPTION("CRC32C using vector polynomial multiply-sum instructions");
MODULE_LICENSE("GPL");
MODULE_ALIAS_CRYPTO("crc32c");
MODULE_ALIAS_CRYPTO("crc32c-vpmsum");
+12 −0
Original line number Diff line number Diff line
@@ -174,6 +174,8 @@
#define PPC_INST_MFSPR_DSCR_USER_MASK	0xfc1fffff
#define PPC_INST_MTSPR_DSCR_USER	0x7c0303a6
#define PPC_INST_MTSPR_DSCR_USER_MASK	0xfc1fffff
#define PPC_INST_MFVSRD			0x7c000066
#define PPC_INST_MTVSRD			0x7c000166
#define PPC_INST_SLBFEE			0x7c0007a7

#define PPC_INST_STRING			0x7c00042a
@@ -188,6 +190,8 @@
#define PPC_INST_WAIT			0x7c00007c
#define PPC_INST_TLBIVAX		0x7c000624
#define PPC_INST_TLBSRX_DOT		0x7c0006a5
#define PPC_INST_VPMSUMW		0x10000488
#define PPC_INST_VPMSUMD		0x100004c8
#define PPC_INST_XXLOR			0xf0000510
#define PPC_INST_XXSWAPD		0xf0000250
#define PPC_INST_XVCPSGNDP		0xf0000780
@@ -359,6 +363,14 @@
					       VSX_XX1((s), a, b))
#define LXVD2X(s, a, b)		stringify_in_c(.long PPC_INST_LXVD2X | \
					       VSX_XX1((s), a, b))
#define MFVRD(a, t)		stringify_in_c(.long PPC_INST_MFVSRD | \
					       VSX_XX1((t)+32, a, R0))
#define MTVRD(t, a)		stringify_in_c(.long PPC_INST_MTVSRD | \
					       VSX_XX1((t)+32, a, R0))
#define VPMSUMW(t, a, b)	stringify_in_c(.long PPC_INST_VPMSUMW | \
					       VSX_XX3((t), a, b))
#define VPMSUMD(t, a, b)	stringify_in_c(.long PPC_INST_VPMSUMD | \
					       VSX_XX3((t), a, b))
#define XXLOR(t, a, b)		stringify_in_c(.long PPC_INST_XXLOR | \
					       VSX_XX3((t), a, b))
#define XXSWAPD(t, a)		stringify_in_c(.long PPC_INST_XXSWAPD | \
+11 −0
Original line number Diff line number Diff line
@@ -437,6 +437,17 @@ config CRYPTO_CRC32C_INTEL
	  gain performance compared with software implementation.
	  Module will be crc32c-intel.

config CRYPT_CRC32C_VPMSUM
	tristate "CRC32c CRC algorithm (powerpc64)"
	depends on PPC64
	select CRYPTO_HASH
	select CRC32
	help
	  CRC32c algorithm implemented using vector polynomial multiply-sum
	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
	  and newer processors for improved performance.


config CRYPTO_CRC32C_SPARC64
	tristate "CRC32c CRC algorithm (SPARC64)"
	depends on SPARC64