Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 3ec7cb36 authored by Chris Packham's avatar Chris Packham Committed by Miquel Raynal
Browse files

mtd: rawnand: micron: support 8/512 on-die ECC



Micron MT29F1G08ABAFAWP-ITE:F supports an on-die ECC with 8 bits
per 512 bytes. Add support for this combination.

Signed-off-by: default avatarChris Packham <chris.packham@alliedtelesis.co.nz>
Reviewed-by: default avatarBoris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: default avatarBoris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: default avatarMiquel Raynal <miquel.raynal@bootlin.com>
parent dbc44edb
Loading
Loading
Loading
Loading
+131 −30
Original line number Diff line number Diff line
@@ -18,10 +18,30 @@
#include <linux/mtd/rawnand.h>

/*
 * Special Micron status bit that indicates when the block has been
 * corrected by on-die ECC and should be rewritten
 * Special Micron status bit 3 indicates that the block has been
 * corrected by on-die ECC and should be rewritten.
 */
#define NAND_STATUS_WRITE_RECOMMENDED	BIT(3)
#define NAND_ECC_STATUS_WRITE_RECOMMENDED	BIT(3)

/*
 * On chips with 8-bit ECC and additional bit can be used to distinguish
 * cases where a errors were corrected without needing a rewrite
 *
 * Bit 4 Bit 3 Bit 0 Description
 * ----- ----- ----- -----------
 * 0     0     0     No Errors
 * 0     0     1     Multiple uncorrected errors
 * 0     1     0     4 - 6 errors corrected, recommend rewrite
 * 0     1     1     Reserved
 * 1     0     0     1 - 3 errors corrected
 * 1     0     1     Reserved
 * 1     1     0     7 - 8 errors corrected, recommend rewrite
 */
#define NAND_ECC_STATUS_MASK		(BIT(4) | BIT(3) | BIT(0))
#define NAND_ECC_STATUS_UNCORRECTABLE	BIT(0)
#define NAND_ECC_STATUS_4_6_CORRECTED	BIT(3)
#define NAND_ECC_STATUS_1_3_CORRECTED	BIT(4)
#define NAND_ECC_STATUS_7_8_CORRECTED	(BIT(4) | BIT(3))

struct nand_onfi_vendor_micron {
	u8 two_plane_read;
@@ -74,7 +94,8 @@ static int micron_nand_onfi_init(struct nand_chip *chip)
	return 0;
}

static int micron_nand_on_die_ooblayout_ecc(struct mtd_info *mtd, int section,
static int micron_nand_on_die_4_ooblayout_ecc(struct mtd_info *mtd,
					      int section,
					      struct mtd_oob_region *oobregion)
{
	if (section >= 4)
@@ -86,7 +107,8 @@ static int micron_nand_on_die_ooblayout_ecc(struct mtd_info *mtd, int section,
	return 0;
}

static int micron_nand_on_die_ooblayout_free(struct mtd_info *mtd, int section,
static int micron_nand_on_die_4_ooblayout_free(struct mtd_info *mtd,
					       int section,
					       struct mtd_oob_region *oobregion)
{
	if (section >= 4)
@@ -98,9 +120,44 @@ static int micron_nand_on_die_ooblayout_free(struct mtd_info *mtd, int section,
	return 0;
}

static const struct mtd_ooblayout_ops micron_nand_on_die_ooblayout_ops = {
	.ecc = micron_nand_on_die_ooblayout_ecc,
	.free = micron_nand_on_die_ooblayout_free,
static const struct mtd_ooblayout_ops micron_nand_on_die_4_ooblayout_ops = {
	.ecc = micron_nand_on_die_4_ooblayout_ecc,
	.free = micron_nand_on_die_4_ooblayout_free,
};

static int micron_nand_on_die_8_ooblayout_ecc(struct mtd_info *mtd,
					      int section,
					      struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = mtd->oobsize - chip->ecc.total;
	oobregion->length = chip->ecc.total;

	return 0;
}

static int micron_nand_on_die_8_ooblayout_free(struct mtd_info *mtd,
					       int section,
					       struct mtd_oob_region *oobregion)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (section)
		return -ERANGE;

	oobregion->offset = 2;
	oobregion->length = mtd->oobsize - chip->ecc.total - 2;

	return 0;
}

static const struct mtd_ooblayout_ops micron_nand_on_die_8_ooblayout_ops = {
	.ecc = micron_nand_on_die_8_ooblayout_ecc,
	.free = micron_nand_on_die_8_ooblayout_free,
};

static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
@@ -113,6 +170,55 @@ static int micron_nand_on_die_ecc_setup(struct nand_chip *chip, bool enable)
	return nand_set_features(chip, ONFI_FEATURE_ON_DIE_ECC, feature);
}

static int micron_nand_on_die_ecc_status_4(struct nand_chip *chip, u8 status)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * The internal ECC doesn't tell us the number of bitflips
	 * that have been corrected, but tells us if it recommends to
	 * rewrite the block. If it's the case, then we pretend we had
	 * a number of bitflips equal to the ECC strength, which will
	 * hint the NAND core to rewrite the block.
	 */
	if (status & NAND_STATUS_FAIL) {
		mtd->ecc_stats.failed++;
	} else if (status & NAND_ECC_STATUS_WRITE_RECOMMENDED) {
		mtd->ecc_stats.corrected += chip->ecc.strength;
		return chip->ecc.strength;
	}

	return 0;
}

static int micron_nand_on_die_ecc_status_8(struct nand_chip *chip, u8 status)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	/*
	 * With 8/512 we have more information but still don't know precisely
	 * how many bit-flips were seen.
	 */
	switch (status & NAND_ECC_STATUS_MASK) {
	case NAND_ECC_STATUS_UNCORRECTABLE:
		mtd->ecc_stats.failed++;
		return 0;
	case NAND_ECC_STATUS_1_3_CORRECTED:
		mtd->ecc_stats.corrected += 3;
		return 3;
	case NAND_ECC_STATUS_4_6_CORRECTED:
		mtd->ecc_stats.corrected += 6;
		/* rewrite recommended */
		return 6;
	case NAND_ECC_STATUS_7_8_CORRECTED:
		mtd->ecc_stats.corrected += 8;
		/* rewrite recommended */
		return 8;
	default:
		return 0;
	}
}

static int
micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
				 uint8_t *buf, int oob_required,
@@ -137,19 +243,10 @@ micron_nand_read_page_on_die_ecc(struct mtd_info *mtd, struct nand_chip *chip,
	if (ret)
		goto out;

	if (status & NAND_STATUS_FAIL) {
		mtd->ecc_stats.failed++;
	} else if (status & NAND_STATUS_WRITE_RECOMMENDED) {
		/*
		 * The internal ECC doesn't tell us the number of bitflips
		 * that have been corrected, but tells us if it recommends to
		 * rewrite the block. If it's the case, then we pretend we had
		 * a number of bitflips equal to the ECC strength, which will
		 * hint the NAND core to rewrite the block.
		 */
		mtd->ecc_stats.corrected += chip->ecc.strength;
		max_bitflips = chip->ecc.strength;
	}
	if (chip->ecc.strength == 4)
		max_bitflips = micron_nand_on_die_ecc_status_4(chip, status);
	else
		max_bitflips = micron_nand_on_die_ecc_status_8(chip, status);

	ret = nand_read_data_op(chip, buf, mtd->writesize, false);
	if (!ret && oob_required)
@@ -254,10 +351,9 @@ static int micron_supports_on_die_ecc(struct nand_chip *chip)
		return MICRON_ON_DIE_MANDATORY;

	/*
	 * Some Micron NANDs have an on-die ECC of 4/512, some other
	 * 8/512. We only support the former.
	 * We only support on-die ECC of 4/512 or 8/512
	 */
	if (chip->ecc_strength_ds != 4)
	if  (chip->ecc_strength_ds != 4 && chip->ecc_strength_ds != 8)
		return MICRON_ON_DIE_UNSUPPORTED;

	return MICRON_ON_DIE_SUPPORTED;
@@ -289,16 +385,21 @@ static int micron_nand_init(struct nand_chip *chip)
			return -EINVAL;
		}

		chip->ecc.bytes = 8;
		if (chip->ecc_strength_ds == 4)
			mtd_set_ooblayout(mtd,
					  &micron_nand_on_die_4_ooblayout_ops);
		else
			mtd_set_ooblayout(mtd,
					  &micron_nand_on_die_8_ooblayout_ops);

		chip->ecc.bytes = chip->ecc_strength_ds * 2;
		chip->ecc.size = 512;
		chip->ecc.strength = 4;
		chip->ecc.strength = chip->ecc_strength_ds;
		chip->ecc.algo = NAND_ECC_BCH;
		chip->ecc.read_page = micron_nand_read_page_on_die_ecc;
		chip->ecc.write_page = micron_nand_write_page_on_die_ecc;
		chip->ecc.read_page_raw = nand_read_page_raw;
		chip->ecc.write_page_raw = nand_write_page_raw;

		mtd_set_ooblayout(mtd, &micron_nand_on_die_ooblayout_ops);
	}

	return 0;