Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 314ab78f authored by Greg Kroah-Hartman's avatar Greg Kroah-Hartman
Browse files

Merge 4.19.84 into android-4.19-q



Changes in 4.19.84
	bonding: fix state transition issue in link monitoring
	CDC-NCM: handle incomplete transfer of MTU
	ipv4: Fix table id reference in fib_sync_down_addr
	net: ethernet: octeon_mgmt: Account for second possible VLAN header
	net: fix data-race in neigh_event_send()
	net: qualcomm: rmnet: Fix potential UAF when unregistering
	net: usb: qmi_wwan: add support for DW5821e with eSIM support
	NFC: fdp: fix incorrect free object
	nfc: netlink: fix double device reference drop
	NFC: st21nfca: fix double free
	qede: fix NULL pointer deref in __qede_remove()
	net: mscc: ocelot: don't handle netdev events for other netdevs
	net: mscc: ocelot: fix NULL pointer on LAG slave removal
	ipv6: fixes rt6_probe() and fib6_nh->last_probe init
	net: hns: Fix the stray netpoll locks causing deadlock in NAPI path
	ALSA: timer: Fix incorrectly assigned timer instance
	ALSA: bebob: fix to detect configured source of sampling clock for Focusrite Saffire Pro i/o series
	ALSA: hda/ca0132 - Fix possible workqueue stall
	mm: memcontrol: fix network errors from failing __GFP_ATOMIC charges
	mm, meminit: recalculate pcpu batch and high limits after init completes
	mm: thp: handle page cache THP correctly in PageTransCompoundMap
	mm, vmstat: hide /proc/pagetypeinfo from normal users
	dump_stack: avoid the livelock of the dump_lock
	tools: gpio: Use !building_out_of_srctree to determine srctree
	perf tools: Fix time sorting
	drm/radeon: fix si_enable_smc_cac() failed issue
	HID: wacom: generic: Treat serial number and related fields as unsigned
	soundwire: depend on ACPI
	soundwire: bus: set initial value to port_status
	arm64: Do not mask out PTE_RDONLY in pte_same()
	ceph: fix use-after-free in __ceph_remove_cap()
	ceph: add missing check in d_revalidate snapdir handling
	iio: adc: stm32-adc: fix stopping dma
	iio: imu: adis16480: make sure provided frequency is positive
	iio: srf04: fix wrong limitation in distance measuring
	ARM: sunxi: Fix CPU powerdown on A83T
	netfilter: nf_tables: Align nft_expr private data to 64-bit
	netfilter: ipset: Fix an error code in ip_set_sockfn_get()
	intel_th: pci: Add Comet Lake PCH support
	intel_th: pci: Add Jasper Lake PCH support
	x86/apic/32: Avoid bogus LDR warnings
	SMB3: Fix persistent handles reconnect
	can: usb_8dev: fix use-after-free on disconnect
	can: flexcan: disable completely the ECC mechanism
	can: c_can: c_can_poll(): only read status register after status IRQ
	can: peak_usb: fix a potential out-of-sync while decoding packets
	can: rx-offload: can_rx_offload_queue_sorted(): fix error handling, avoid skb mem leak
	can: gs_usb: gs_can_open(): prevent memory leak
	can: dev: add missing of_node_put() after calling of_get_child_by_name()
	can: mcba_usb: fix use-after-free on disconnect
	can: peak_usb: fix slab info leak
	configfs: stash the data we need into configfs_buffer at open time
	configfs_register_group() shouldn't be (and isn't) called in rmdirable parts
	configfs: new object reprsenting tree fragments
	configfs: provide exclusion between IO and removals
	configfs: fix a deadlock in configfs_symlink()
	ALSA: usb-audio: More validations of descriptor units
	ALSA: usb-audio: Simplify parse_audio_unit()
	ALSA: usb-audio: Unify the release of usb_mixer_elem_info objects
	ALSA: usb-audio: Remove superfluous bLength checks
	ALSA: usb-audio: Clean up check_input_term()
	ALSA: usb-audio: Fix possible NULL dereference at create_yamaha_midi_quirk()
	ALSA: usb-audio: remove some dead code
	ALSA: usb-audio: Fix copy&paste error in the validator
	sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices
	sched/fair: Fix -Wunused-but-set-variable warnings
	usbip: Fix vhci_urb_enqueue() URB null transfer buffer error path
	usbip: Implement SG support to vhci-hcd and stub driver
	PCI: tegra: Enable Relaxed Ordering only for Tegra20 & Tegra30
	HID: google: add magnemite/masterball USB ids
	dmaengine: xilinx_dma: Fix control reg update in vdma_channel_set_config
	dmaengine: sprd: Fix the possible memory leak issue
	HID: intel-ish-hid: fix wrong error handling in ishtp_cl_alloc_tx_ring()
	RDMA/mlx5: Clear old rate limit when closing QP
	iw_cxgb4: fix ECN check on the passive accept
	RDMA/qedr: Fix reported firmware version
	net/mlx5e: TX, Fix consumer index of error cqe dump
	net/mlx5: prevent memory leak in mlx5_fpga_conn_create_cq
	scsi: qla2xxx: fixup incorrect usage of host_byte
	RDMA/uverbs: Prevent potential underflow
	net: openvswitch: free vport unless register_netdevice() succeeds
	scsi: lpfc: Honor module parameter lpfc_use_adisc
	scsi: qla2xxx: Initialized mailbox to prevent driver load failure
	netfilter: nf_flow_table: set timeout before insertion into hashes
	ipvs: don't ignore errors in case refcounting ip_vs module fails
	ipvs: move old_secure_tcp into struct netns_ipvs
	bonding: fix unexpected IFF_BONDING bit unset
	macsec: fix refcnt leak in module exit routine
	usb: fsl: Check memory resource before releasing it
	usb: gadget: udc: atmel: Fix interrupt storm in FIFO mode.
	usb: gadget: composite: Fix possible double free memory bug
	usb: dwc3: pci: prevent memory leak in dwc3_pci_probe
	usb: gadget: configfs: fix concurrent issue between composite APIs
	usb: dwc3: remove the call trace of USBx_GFLADJ
	perf/x86/amd/ibs: Fix reading of the IBS OpData register and thus precise RIP validity
	perf/x86/amd/ibs: Handle erratum #420 only on the affected CPU family (10h)
	perf/x86/uncore: Fix event group support
	USB: Skip endpoints with 0 maxpacket length
	USB: ldusb: use unsigned size format specifiers
	usbip: tools: Fix read_usb_vudc_device() error path handling
	RDMA/iw_cxgb4: Avoid freeing skb twice in arp failure case
	RDMA/hns: Prevent memory leaks of eq->buf_list
	scsi: qla2xxx: stop timer in shutdown path
	nvme-multipath: fix possible io hang after ctrl reconnect
	fjes: Handle workqueue allocation failure
	net: hisilicon: Fix "Trying to free already-free IRQ"
	net: mscc: ocelot: fix vlan_filtering when enslaving to bridge before link is up
	net: mscc: ocelot: refuse to overwrite the port's native vlan
	iommu/amd: Apply the same IVRS IOAPIC workaround to Acer Aspire A315-41
	drm/amdgpu: If amdgpu_ib_schedule fails return back the error.
	drm/amd/display: Passive DP->HDMI dongle detection fix
	hv_netvsc: Fix error handling in netvsc_attach()
	usb: dwc3: gadget: fix race when disabling ep with cancelled xfers
	NFSv4: Don't allow a cached open with a revoked delegation
	net: ethernet: arc: add the missed clk_disable_unprepare
	igb: Fix constant media auto sense switching when no cable is connected
	e1000: fix memory leaks
	pinctrl: intel: Avoid potential glitches if pin is in GPIO mode
	ocfs2: protect extent tree in ocfs2_prepare_inode_for_write()
	pinctrl: cherryview: Fix irq_valid_mask calculation
	blkcg: make blkcg_print_stat() print stats only for online blkgs
	iio: imu: mpu6050: Add support for the ICM 20602 IMU
	iio: imu: inv_mpu6050: fix no data on MPU6050
	mm/filemap.c: don't initiate writeback if mapping has no dirty pages
	cgroup,writeback: don't switch wbs immediately on dead wbs if the memcg is dead
	usbip: Fix free of unallocated memory in vhci tx
	netfilter: ipset: Copy the right MAC address in hash:ip,mac IPv6 sets
	net: prevent load/store tearing on sk->sk_stamp
	iio: imu: mpu6050: Fix FIFO layout for ICM20602
	vsock/virtio: fix sock refcnt holding during the shutdown
	drm/i915: Rename gen7 cmdparser tables
	drm/i915: Disable Secure Batches for gen6+
	drm/i915: Remove Master tables from cmdparser
	drm/i915: Add support for mandatory cmdparsing
	drm/i915: Support ro ppgtt mapped cmdparser shadow buffers
	drm/i915: Allow parsing of unsized batches
	drm/i915: Add gen9 BCS cmdparsing
	drm/i915/cmdparser: Use explicit goto for error paths
	drm/i915/cmdparser: Add support for backward jumps
	drm/i915/cmdparser: Ignore Length operands during command matching
	drm/i915: Lower RM timeout to avoid DSI hard hangs
	drm/i915/gen8+: Add RC6 CTX corruption WA
	drm/i915/cmdparser: Fix jump whitelist clearing
	KVM: x86: use Intel speculation bugs and features as derived in generic x86 code
	x86/msr: Add the IA32_TSX_CTRL MSR
	x86/cpu: Add a helper function x86_read_arch_cap_msr()
	x86/cpu: Add a "tsx=" cmdline option with TSX disabled by default
	x86/speculation/taa: Add mitigation for TSX Async Abort
	x86/speculation/taa: Add sysfs reporting for TSX Async Abort
	kvm/x86: Export MDS_NO=0 to guests when TSX is enabled
	x86/tsx: Add "auto" option to the tsx= cmdline parameter
	x86/speculation/taa: Add documentation for TSX Async Abort
	x86/tsx: Add config options to set tsx=on|off|auto
	x86/speculation/taa: Fix printing of TAA_MSG_SMT on IBRS_ALL CPUs
	x86/bugs: Add ITLB_MULTIHIT bug infrastructure
	x86/cpu: Add Tremont to the cpu vulnerability whitelist
	cpu/speculation: Uninline and export CPU mitigations helpers
	Documentation: Add ITLB_MULTIHIT documentation
	kvm: x86, powerpc: do not allow clearing largepages debugfs entry
	kvm: Convert kvm_lock to a mutex
	kvm: mmu: Do not release the page inside mmu_set_spte()
	KVM: x86: make FNAME(fetch) and __direct_map more similar
	KVM: x86: remove now unneeded hugepage gfn adjustment
	KVM: x86: change kvm_mmu_page_get_gfn BUG_ON to WARN_ON
	KVM: x86: add tracepoints around __direct_map and FNAME(fetch)
	KVM: vmx, svm: always run with EFER.NXE=1 when shadow paging is active
	kvm: mmu: ITLB_MULTIHIT mitigation
	kvm: Add helper function for creating VM worker threads
	kvm: x86: mmu: Recovery of shattered NX large pages
	Linux 4.19.84

Signed-off-by: default avatarGreg Kroah-Hartman <gregkh@google.com>
Change-Id: Ibfe5348dad4efa4a34f9be3252aadef6be6b29f3
parents b5548d6d c555efaf
Loading
Loading
Loading
Loading
+2 −0
Original line number Diff line number Diff line
@@ -478,6 +478,8 @@ What: /sys/devices/system/cpu/vulnerabilities
		/sys/devices/system/cpu/vulnerabilities/spec_store_bypass
		/sys/devices/system/cpu/vulnerabilities/l1tf
		/sys/devices/system/cpu/vulnerabilities/mds
		/sys/devices/system/cpu/vulnerabilities/tsx_async_abort
		/sys/devices/system/cpu/vulnerabilities/itlb_multihit
Date:		January 2018
Contact:	Linux kernel mailing list <linux-kernel@vger.kernel.org>
Description:	Information about CPU vulnerabilities
+2 −0
Original line number Diff line number Diff line
@@ -12,3 +12,5 @@ are configurable at compile, boot or run time.
   spectre
   l1tf
   mds
   tsx_async_abort
   multihit.rst
+163 −0
Original line number Diff line number Diff line
iTLB multihit
=============

iTLB multihit is an erratum where some processors may incur a machine check
error, possibly resulting in an unrecoverable CPU lockup, when an
instruction fetch hits multiple entries in the instruction TLB. This can
occur when the page size is changed along with either the physical address
or cache type. A malicious guest running on a virtualized system can
exploit this erratum to perform a denial of service attack.


Affected processors
-------------------

Variations of this erratum are present on most Intel Core and Xeon processor
models. The erratum is not present on:

   - non-Intel processors

   - Some Atoms (Airmont, Bonnell, Goldmont, GoldmontPlus, Saltwell, Silvermont)

   - Intel processors that have the PSCHANGE_MC_NO bit set in the
     IA32_ARCH_CAPABILITIES MSR.


Related CVEs
------------

The following CVE entry is related to this issue:

   ==============  =================================================
   CVE-2018-12207  Machine Check Error Avoidance on Page Size Change
   ==============  =================================================


Problem
-------

Privileged software, including OS and virtual machine managers (VMM), are in
charge of memory management. A key component in memory management is the control
of the page tables. Modern processors use virtual memory, a technique that creates
the illusion of a very large memory for processors. This virtual space is split
into pages of a given size. Page tables translate virtual addresses to physical
addresses.

To reduce latency when performing a virtual to physical address translation,
processors include a structure, called TLB, that caches recent translations.
There are separate TLBs for instruction (iTLB) and data (dTLB).

Under this errata, instructions are fetched from a linear address translated
using a 4 KB translation cached in the iTLB. Privileged software modifies the
paging structure so that the same linear address using large page size (2 MB, 4
MB, 1 GB) with a different physical address or memory type.  After the page
structure modification but before the software invalidates any iTLB entries for
the linear address, a code fetch that happens on the same linear address may
cause a machine-check error which can result in a system hang or shutdown.


Attack scenarios
----------------

Attacks against the iTLB multihit erratum can be mounted from malicious
guests in a virtualized system.


iTLB multihit system information
--------------------------------

The Linux kernel provides a sysfs interface to enumerate the current iTLB
multihit status of the system:whether the system is vulnerable and which
mitigations are active. The relevant sysfs file is:

/sys/devices/system/cpu/vulnerabilities/itlb_multihit

The possible values in this file are:

.. list-table::

     * - Not affected
       - The processor is not vulnerable.
     * - KVM: Mitigation: Split huge pages
       - Software changes mitigate this issue.
     * - KVM: Vulnerable
       - The processor is vulnerable, but no mitigation enabled


Enumeration of the erratum
--------------------------------

A new bit has been allocated in the IA32_ARCH_CAPABILITIES (PSCHANGE_MC_NO) msr
and will be set on CPU's which are mitigated against this issue.

   =======================================   ===========   ===============================
   IA32_ARCH_CAPABILITIES MSR                Not present   Possibly vulnerable,check model
   IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO]    '0'           Likely vulnerable,check model
   IA32_ARCH_CAPABILITIES[PSCHANGE_MC_NO]    '1'           Not vulnerable
   =======================================   ===========   ===============================


Mitigation mechanism
-------------------------

This erratum can be mitigated by restricting the use of large page sizes to
non-executable pages.  This forces all iTLB entries to be 4K, and removes
the possibility of multiple hits.

In order to mitigate the vulnerability, KVM initially marks all huge pages
as non-executable. If the guest attempts to execute in one of those pages,
the page is broken down into 4K pages, which are then marked executable.

If EPT is disabled or not available on the host, KVM is in control of TLB
flushes and the problematic situation cannot happen.  However, the shadow
EPT paging mechanism used by nested virtualization is vulnerable, because
the nested guest can trigger multiple iTLB hits by modifying its own
(non-nested) page tables.  For simplicity, KVM will make large pages
non-executable in all shadow paging modes.

Mitigation control on the kernel command line and KVM - module parameter
------------------------------------------------------------------------

The KVM hypervisor mitigation mechanism for marking huge pages as
non-executable can be controlled with a module parameter "nx_huge_pages=".
The kernel command line allows to control the iTLB multihit mitigations at
boot time with the option "kvm.nx_huge_pages=".

The valid arguments for these options are:

  ==========  ================================================================
  force       Mitigation is enabled. In this case, the mitigation implements
              non-executable huge pages in Linux kernel KVM module. All huge
              pages in the EPT are marked as non-executable.
              If a guest attempts to execute in one of those pages, the page is
              broken down into 4K pages, which are then marked executable.

  off	      Mitigation is disabled.

  auto        Enable mitigation only if the platform is affected and the kernel
              was not booted with the "mitigations=off" command line parameter.
	      This is the default option.
  ==========  ================================================================


Mitigation selection guide
--------------------------

1. No virtualization in use
^^^^^^^^^^^^^^^^^^^^^^^^^^^

   The system is protected by the kernel unconditionally and no further
   action is required.

2. Virtualization with trusted guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

   If the guest comes from a trusted source, you may assume that the guest will
   not attempt to maliciously exploit these errata and no further action is
   required.

3. Virtualization with untrusted guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   If the guest comes from an untrusted source, the guest host kernel will need
   to apply iTLB multihit mitigation via the kernel command line or kvm
   module parameter.
+276 −0
Original line number Diff line number Diff line
.. SPDX-License-Identifier: GPL-2.0

TAA - TSX Asynchronous Abort
======================================

TAA is a hardware vulnerability that allows unprivileged speculative access to
data which is available in various CPU internal buffers by using asynchronous
aborts within an Intel TSX transactional region.

Affected processors
-------------------

This vulnerability only affects Intel processors that support Intel
Transactional Synchronization Extensions (TSX) when the TAA_NO bit (bit 8)
is 0 in the IA32_ARCH_CAPABILITIES MSR.  On processors where the MDS_NO bit
(bit 5) is 0 in the IA32_ARCH_CAPABILITIES MSR, the existing MDS mitigations
also mitigate against TAA.

Whether a processor is affected or not can be read out from the TAA
vulnerability file in sysfs. See :ref:`tsx_async_abort_sys_info`.

Related CVEs
------------

The following CVE entry is related to this TAA issue:

   ==============  =====  ===================================================
   CVE-2019-11135  TAA    TSX Asynchronous Abort (TAA) condition on some
                          microprocessors utilizing speculative execution may
                          allow an authenticated user to potentially enable
                          information disclosure via a side channel with
                          local access.
   ==============  =====  ===================================================

Problem
-------

When performing store, load or L1 refill operations, processors write
data into temporary microarchitectural structures (buffers). The data in
those buffers can be forwarded to load operations as an optimization.

Intel TSX is an extension to the x86 instruction set architecture that adds
hardware transactional memory support to improve performance of multi-threaded
software. TSX lets the processor expose and exploit concurrency hidden in an
application due to dynamically avoiding unnecessary synchronization.

TSX supports atomic memory transactions that are either committed (success) or
aborted. During an abort, operations that happened within the transactional region
are rolled back. An asynchronous abort takes place, among other options, when a
different thread accesses a cache line that is also used within the transactional
region when that access might lead to a data race.

Immediately after an uncompleted asynchronous abort, certain speculatively
executed loads may read data from those internal buffers and pass it to dependent
operations. This can be then used to infer the value via a cache side channel
attack.

Because the buffers are potentially shared between Hyper-Threads cross
Hyper-Thread attacks are possible.

The victim of a malicious actor does not need to make use of TSX. Only the
attacker needs to begin a TSX transaction and raise an asynchronous abort
which in turn potenitally leaks data stored in the buffers.

More detailed technical information is available in the TAA specific x86
architecture section: :ref:`Documentation/x86/tsx_async_abort.rst <tsx_async_abort>`.


Attack scenarios
----------------

Attacks against the TAA vulnerability can be implemented from unprivileged
applications running on hosts or guests.

As for MDS, the attacker has no control over the memory addresses that can
be leaked. Only the victim is responsible for bringing data to the CPU. As
a result, the malicious actor has to sample as much data as possible and
then postprocess it to try to infer any useful information from it.

A potential attacker only has read access to the data. Also, there is no direct
privilege escalation by using this technique.


.. _tsx_async_abort_sys_info:

TAA system information
-----------------------

The Linux kernel provides a sysfs interface to enumerate the current TAA status
of mitigated systems. The relevant sysfs file is:

/sys/devices/system/cpu/vulnerabilities/tsx_async_abort

The possible values in this file are:

.. list-table::

   * - 'Vulnerable'
     - The CPU is affected by this vulnerability and the microcode and kernel mitigation are not applied.
   * - 'Vulnerable: Clear CPU buffers attempted, no microcode'
     - The system tries to clear the buffers but the microcode might not support the operation.
   * - 'Mitigation: Clear CPU buffers'
     - The microcode has been updated to clear the buffers. TSX is still enabled.
   * - 'Mitigation: TSX disabled'
     - TSX is disabled.
   * - 'Not affected'
     - The CPU is not affected by this issue.

.. _ucode_needed:

Best effort mitigation mode
^^^^^^^^^^^^^^^^^^^^^^^^^^^

If the processor is vulnerable, but the availability of the microcode-based
mitigation mechanism is not advertised via CPUID the kernel selects a best
effort mitigation mode.  This mode invokes the mitigation instructions
without a guarantee that they clear the CPU buffers.

This is done to address virtualization scenarios where the host has the
microcode update applied, but the hypervisor is not yet updated to expose the
CPUID to the guest. If the host has updated microcode the protection takes
effect; otherwise a few CPU cycles are wasted pointlessly.

The state in the tsx_async_abort sysfs file reflects this situation
accordingly.


Mitigation mechanism
--------------------

The kernel detects the affected CPUs and the presence of the microcode which is
required. If a CPU is affected and the microcode is available, then the kernel
enables the mitigation by default.


The mitigation can be controlled at boot time via a kernel command line option.
See :ref:`taa_mitigation_control_command_line`.

.. _virt_mechanism:

Virtualization mitigation
^^^^^^^^^^^^^^^^^^^^^^^^^

Affected systems where the host has TAA microcode and TAA is mitigated by
having disabled TSX previously, are not vulnerable regardless of the status
of the VMs.

In all other cases, if the host either does not have the TAA microcode or
the kernel is not mitigated, the system might be vulnerable.


.. _taa_mitigation_control_command_line:

Mitigation control on the kernel command line
---------------------------------------------

The kernel command line allows to control the TAA mitigations at boot time with
the option "tsx_async_abort=". The valid arguments for this option are:

  ============  =============================================================
  off		This option disables the TAA mitigation on affected platforms.
                If the system has TSX enabled (see next parameter) and the CPU
                is affected, the system is vulnerable.

  full	        TAA mitigation is enabled. If TSX is enabled, on an affected
                system it will clear CPU buffers on ring transitions. On
                systems which are MDS-affected and deploy MDS mitigation,
                TAA is also mitigated. Specifying this option on those
                systems will have no effect.

  full,nosmt    The same as tsx_async_abort=full, with SMT disabled on
                vulnerable CPUs that have TSX enabled. This is the complete
                mitigation. When TSX is disabled, SMT is not disabled because
                CPU is not vulnerable to cross-thread TAA attacks.
  ============  =============================================================

Not specifying this option is equivalent to "tsx_async_abort=full".

The kernel command line also allows to control the TSX feature using the
parameter "tsx=" on CPUs which support TSX control. MSR_IA32_TSX_CTRL is used
to control the TSX feature and the enumeration of the TSX feature bits (RTM
and HLE) in CPUID.

The valid options are:

  ============  =============================================================
  off		Disables TSX on the system.

                Note that this option takes effect only on newer CPUs which are
                not vulnerable to MDS, i.e., have MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1
                and which get the new IA32_TSX_CTRL MSR through a microcode
                update. This new MSR allows for the reliable deactivation of
                the TSX functionality.

  on		Enables TSX.

                Although there are mitigations for all known security
                vulnerabilities, TSX has been known to be an accelerator for
                several previous speculation-related CVEs, and so there may be
                unknown security risks associated with leaving it enabled.

  auto		Disables TSX if X86_BUG_TAA is present, otherwise enables TSX
                on the system.
  ============  =============================================================

Not specifying this option is equivalent to "tsx=off".

The following combinations of the "tsx_async_abort" and "tsx" are possible. For
affected platforms tsx=auto is equivalent to tsx=off and the result will be:

  =========  ==========================   =========================================
  tsx=on     tsx_async_abort=full         The system will use VERW to clear CPU
                                          buffers. Cross-thread attacks are still
					  possible on SMT machines.
  tsx=on     tsx_async_abort=full,nosmt   As above, cross-thread attacks on SMT
                                          mitigated.
  tsx=on     tsx_async_abort=off          The system is vulnerable.
  tsx=off    tsx_async_abort=full         TSX might be disabled if microcode
                                          provides a TSX control MSR. If so,
					  system is not vulnerable.
  tsx=off    tsx_async_abort=full,nosmt   Ditto
  tsx=off    tsx_async_abort=off          ditto
  =========  ==========================   =========================================


For unaffected platforms "tsx=on" and "tsx_async_abort=full" does not clear CPU
buffers.  For platforms without TSX control (MSR_IA32_ARCH_CAPABILITIES.MDS_NO=0)
"tsx" command line argument has no effect.

For the affected platforms below table indicates the mitigation status for the
combinations of CPUID bit MD_CLEAR and IA32_ARCH_CAPABILITIES MSR bits MDS_NO
and TSX_CTRL_MSR.

  =======  =========  =============  ========================================
  MDS_NO   MD_CLEAR   TSX_CTRL_MSR   Status
  =======  =========  =============  ========================================
    0          0            0        Vulnerable (needs microcode)
    0          1            0        MDS and TAA mitigated via VERW
    1          1            0        MDS fixed, TAA vulnerable if TSX enabled
                                     because MD_CLEAR has no meaning and
                                     VERW is not guaranteed to clear buffers
    1          X            1        MDS fixed, TAA can be mitigated by
                                     VERW or TSX_CTRL_MSR
  =======  =========  =============  ========================================

Mitigation selection guide
--------------------------

1. Trusted userspace and guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If all user space applications are from a trusted source and do not execute
untrusted code which is supplied externally, then the mitigation can be
disabled. The same applies to virtualized environments with trusted guests.


2. Untrusted userspace and guests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

If there are untrusted applications or guests on the system, enabling TSX
might allow a malicious actor to leak data from the host or from other
processes running on the same physical core.

If the microcode is available and the TSX is disabled on the host, attacks
are prevented in a virtualized environment as well, even if the VMs do not
explicitly enable the mitigation.


.. _taa_default_mitigations:

Default mitigations
-------------------

The kernel's default action for vulnerable processors is:

  - Deploy TSX disable mitigation (tsx_async_abort=full tsx=off).
+92 −0
Original line number Diff line number Diff line
@@ -1956,6 +1956,25 @@
			KVM MMU at runtime.
			Default is 0 (off)

	kvm.nx_huge_pages=
			[KVM] Controls the software workaround for the
			X86_BUG_ITLB_MULTIHIT bug.
			force	: Always deploy workaround.
			off	: Never deploy workaround.
			auto    : Deploy workaround based on the presence of
				  X86_BUG_ITLB_MULTIHIT.

			Default is 'auto'.

			If the software workaround is enabled for the host,
			guests do need not to enable it for nested guests.

	kvm.nx_huge_pages_recovery_ratio=
			[KVM] Controls how many 4KiB pages are periodically zapped
			back to huge pages.  0 disables the recovery, otherwise if
			the value is N KVM will zap 1/Nth of the 4KiB pages every
			minute.  The default is 60.

	kvm-amd.nested=	[KVM,AMD] Allow nested virtualization in KVM/SVM.
			Default is 1 (enabled)

@@ -2523,6 +2542,13 @@
					       ssbd=force-off [ARM64]
					       l1tf=off [X86]
					       mds=off [X86]
					       tsx_async_abort=off [X86]
					       kvm.nx_huge_pages=off [X86]

				Exceptions:
					       This does not have any effect on
					       kvm.nx_huge_pages when
					       kvm.nx_huge_pages=force.

			auto (default)
				Mitigate all CPU vulnerabilities, but leave SMT
@@ -2538,6 +2564,7 @@
				be fully mitigated, even if it means losing SMT.
				Equivalent to: l1tf=flush,nosmt [X86]
					       mds=full,nosmt [X86]
					       tsx_async_abort=full,nosmt [X86]

	mminit_loglevel=
			[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
@@ -4694,6 +4721,71 @@
			marks the TSC unconditionally unstable at bootup and
			avoids any further wobbles once the TSC watchdog notices.

	tsx=		[X86] Control Transactional Synchronization
			Extensions (TSX) feature in Intel processors that
			support TSX control.

			This parameter controls the TSX feature. The options are:

			on	- Enable TSX on the system. Although there are
				mitigations for all known security vulnerabilities,
				TSX has been known to be an accelerator for
				several previous speculation-related CVEs, and
				so there may be unknown	security risks associated
				with leaving it enabled.

			off	- Disable TSX on the system. (Note that this
				option takes effect only on newer CPUs which are
				not vulnerable to MDS, i.e., have
				MSR_IA32_ARCH_CAPABILITIES.MDS_NO=1 and which get
				the new IA32_TSX_CTRL MSR through a microcode
				update. This new MSR allows for the reliable
				deactivation of the TSX functionality.)

			auto	- Disable TSX if X86_BUG_TAA is present,
				  otherwise enable TSX on the system.

			Not specifying this option is equivalent to tsx=off.

			See Documentation/admin-guide/hw-vuln/tsx_async_abort.rst
			for more details.

	tsx_async_abort= [X86,INTEL] Control mitigation for the TSX Async
			Abort (TAA) vulnerability.

			Similar to Micro-architectural Data Sampling (MDS)
			certain CPUs that support Transactional
			Synchronization Extensions (TSX) are vulnerable to an
			exploit against CPU internal buffers which can forward
			information to a disclosure gadget under certain
			conditions.

			In vulnerable processors, the speculatively forwarded
			data can be used in a cache side channel attack, to
			access data to which the attacker does not have direct
			access.

			This parameter controls the TAA mitigation.  The
			options are:

			full       - Enable TAA mitigation on vulnerable CPUs
				     if TSX is enabled.

			full,nosmt - Enable TAA mitigation and disable SMT on
				     vulnerable CPUs. If TSX is disabled, SMT
				     is not disabled because CPU is not
				     vulnerable to cross-thread TAA attacks.
			off        - Unconditionally disable TAA mitigation

			Not specifying this option is equivalent to
			tsx_async_abort=full.  On CPUs which are MDS affected
			and deploy MDS mitigation, TAA mitigation is not
			required and doesn't provide any additional
			mitigation.

			For details see:
			Documentation/admin-guide/hw-vuln/tsx_async_abort.rst

	turbografx.map[2|3]=	[HW,JOY]
			TurboGraFX parallel port interface
			Format:
Loading