Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 21039ac3 authored by Nils Wallménius's avatar Nils Wallménius Committed by Alex Deucher
Browse files

drm/amd/powerplay: Mark functions of ppevvmath.h static



This introduces some warnings due to unused functions, that are
deleted in the following commit.

Signed-off-by: default avatarNils Wallménius <nils.wallmenius@gmail.com>
Signed-off-by: default avatarAlex Deucher <alexander.deucher@amd.com>
parent a37cfa8b
Loading
Loading
Loading
Loading
+64 −64
Original line number Diff line number Diff line
@@ -50,53 +50,53 @@ typedef union _fInt {
 * Function Declarations
 *  -------------------------------------------------------------------------------
 */
fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
fInt Convert_ULONG_ToFraction(uint32_t);              /* Use this to convert an uint32_t to a FINT */
fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */

fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */

int uAbs(int);                                     /* Returns the Absolute value of the Int */
fInt fAbs(fInt);                                   /* Returns the Absolute value of the fInt */
int uPow(int base, int exponent);                  /* Returns base^exponent an INT */

void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
bool Equal(fInt, fInt);                         /* Returns true if two fInts are equal to each other */
bool GreaterThan(fInt A, fInt B);               /* Returns true if A > B */

fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */
static fInt ConvertToFraction(int);                       /* Use this to convert an INT to a FINT */
static fInt Convert_ULONG_ToFraction(uint32_t);           /* Use this to convert an uint32_t to a FINT */
static fInt GetScaledFraction(int, int);                  /* Use this to convert an INT to a FINT after scaling it by a factor */
static int ConvertBackToInteger(fInt);                    /* Convert a FINT back to an INT that is scaled by 1000 (i.e. last 3 digits are the decimal digits) */

static fInt fNegate(fInt);                                /* Returns -1 * input fInt value */
static fInt fAdd (fInt, fInt);                            /* Returns the sum of two fInt numbers */
static fInt fSubtract (fInt A, fInt B);                   /* Returns A-B - Sometimes easier than Adding negative numbers */
static fInt fMultiply (fInt, fInt);                       /* Returns the product of two fInt numbers */
static fInt fDivide (fInt A, fInt B);                     /* Returns A/B */
static fInt fGetSquare(fInt);                             /* Returns the square of a fInt number */
static fInt fSqrt(fInt);                                  /* Returns the Square Root of a fInt number */

static int uAbs(int);                                     /* Returns the Absolute value of the Int */
static fInt fAbs(fInt);                                   /* Returns the Absolute value of the fInt */
static int uPow(int base, int exponent);                  /* Returns base^exponent an INT */

static void SolveQuadracticEqn(fInt, fInt, fInt, fInt[]); /* Returns the 2 roots via the array */
static bool Equal(fInt, fInt);                            /* Returns true if two fInts are equal to each other */
static bool GreaterThan(fInt A, fInt B);                  /* Returns true if A > B */

static fInt fExponential(fInt exponent);                  /* Can be used to calculate e^exponent */
static fInt fNaturalLog(fInt value);                      /* Can be used to calculate ln(value) */

/* Fuse decoding functions
 * -------------------------------------------------------------------------------------
 */
fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);
static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength);
static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength);
static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength);

/* Internal Support Functions - Use these ONLY for testing or adding to internal functions
 * -------------------------------------------------------------------------------------
 * Some of the following functions take two INTs as their input - This is unsafe for a variety of reasons.
 */
fInt Add (int, int);                               /* Add two INTs and return Sum as FINT */
fInt Multiply (int, int);                          /* Multiply two INTs and return Product as FINT */
fInt Divide (int, int);                            /* You get the idea... */
fInt fNegate(fInt);
static fInt Add (int, int);                               /* Add two INTs and return Sum as FINT */
static fInt Multiply (int, int);                          /* Multiply two INTs and return Product as FINT */
static fInt Divide (int, int);                            /* You get the idea... */
static fInt fNegate(fInt);

int uGetScaledDecimal (fInt);                      /* Internal function */
int GetReal (fInt A);                              /* Internal function */
static int uGetScaledDecimal (fInt);                      /* Internal function */
static int GetReal (fInt A);                              /* Internal function */

/* Future Additions and Incomplete Functions
 * -------------------------------------------------------------------------------------
 */
int GetRoundedValue(fInt);                         /* Incomplete function - Useful only when Precision is lacking */
static int GetRoundedValue(fInt);                         /* Incomplete function - Useful only when Precision is lacking */
                                                          /* Let us say we have 2.126 but can only handle 2 decimal points. We could */
                                                          /* either chop of 6 and keep 2.12 or use this function to get 2.13, which is more accurate */

@@ -115,7 +115,7 @@ int GetRoundedValue(fInt); /* Incomplete function - Usef
 * START OF CODE
 * -------------------------------------------------------------------------------------
 */
fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
static fInt fExponential(fInt exponent)        /*Can be used to calculate e^exponent*/
{
	uint32_t i;
	bool bNegated = false;
@@ -154,7 +154,7 @@ fInt fExponential(fInt exponent) /*Can be used to calculate e^exponent*/
	return solution;
}

fInt fNaturalLog(fInt value)
static fInt fNaturalLog(fInt value)
{
	uint32_t i;
	fInt upper_bound = Divide(8, 1000);
@@ -179,7 +179,7 @@ fInt fNaturalLog(fInt value)
	return (fAdd(solution, error_term));
}

fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
static fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t bitlength)
{
	fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
	fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
@@ -194,7 +194,7 @@ fInt fDecodeLinearFuse(uint32_t fuse_value, fInt f_min, fInt f_range, uint32_t b
}


fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
static fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint32_t bitlength)
{
	fInt f_fuse_value = Convert_ULONG_ToFraction(fuse_value);
	fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
@@ -212,7 +212,7 @@ fInt fDecodeLogisticFuse(uint32_t fuse_value, fInt f_average, fInt f_range, uint
	return f_decoded_value;
}

fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
static fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min, uint32_t bitlength)
{
	fInt fLeakage;
	fInt f_bit_max_value = Convert_ULONG_ToFraction((uPow(2, bitlength)) - 1);
@@ -225,7 +225,7 @@ fInt fDecodeLeakageID (uint32_t leakageID_fuse, fInt ln_max_div_min, fInt f_min,
	return fLeakage;
}

fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
static fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to make fInt a private declaration? */
{
	fInt temp;

@@ -237,13 +237,13 @@ fInt ConvertToFraction(int X) /*Add all range checking here. Is it possible to m
	return temp;
}

fInt fNegate(fInt X)
static fInt fNegate(fInt X)
{
	fInt CONSTANT_NEGONE = ConvertToFraction(-1);
	return (fMultiply(X, CONSTANT_NEGONE));
}

fInt Convert_ULONG_ToFraction(uint32_t X)
static fInt Convert_ULONG_ToFraction(uint32_t X)
{
	fInt temp;

@@ -255,7 +255,7 @@ fInt Convert_ULONG_ToFraction(uint32_t X)
	return temp;
}

fInt GetScaledFraction(int X, int factor)
static fInt GetScaledFraction(int X, int factor)
{
	int times_shifted, factor_shifted;
	bool bNEGATED;
@@ -304,7 +304,7 @@ fInt GetScaledFraction(int X, int factor)
}

/* Addition using two fInts */
fInt fAdd (fInt X, fInt Y)
static fInt fAdd (fInt X, fInt Y)
{
	fInt Sum;

@@ -314,7 +314,7 @@ fInt fAdd (fInt X, fInt Y)
}

/* Addition using two fInts */
fInt fSubtract (fInt X, fInt Y)
static fInt fSubtract (fInt X, fInt Y)
{
	fInt Difference;

@@ -323,7 +323,7 @@ fInt fSubtract (fInt X, fInt Y)
	return Difference;
}

bool Equal(fInt A, fInt B)
static bool Equal(fInt A, fInt B)
{
	if (A.full == B.full)
		return true;
@@ -331,7 +331,7 @@ bool Equal(fInt A, fInt B)
		return false;
}

bool GreaterThan(fInt A, fInt B)
static bool GreaterThan(fInt A, fInt B)
{
	if (A.full > B.full)
		return true;
@@ -339,7 +339,7 @@ bool GreaterThan(fInt A, fInt B)
		return false;
}

fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
static fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
{
	fInt Product;
	int64_t tempProduct;
@@ -363,7 +363,7 @@ fInt fMultiply (fInt X, fInt Y) /* Uses 64-bit integers (int64_t) */
	return Product;
}

fInt fDivide (fInt X, fInt Y)
static fInt fDivide (fInt X, fInt Y)
{
	fInt fZERO, fQuotient;
	int64_t longlongX, longlongY;
@@ -384,7 +384,7 @@ fInt fDivide (fInt X, fInt Y)
	return fQuotient;
}

int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
static int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to check with the Golden settings table*/
{
	fInt fullNumber, scaledDecimal, scaledReal;

@@ -397,13 +397,13 @@ int ConvertBackToInteger (fInt A) /*THIS is the function that will be used to ch
	return fullNumber.full;
}

fInt fGetSquare(fInt A)
static fInt fGetSquare(fInt A)
{
	return fMultiply(A,A);
}

/* x_new = x_old - (x_old^2 - C) / (2 * x_old) */
fInt fSqrt(fInt num)
static fInt fSqrt(fInt num)
{
	fInt F_divide_Fprime, Fprime;
	fInt test;
@@ -460,7 +460,7 @@ fInt fSqrt(fInt num)
	return (x_new);
}

void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
static void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
{
	fInt *pRoots = &Roots[0];
	fInt temp, root_first, root_second;
@@ -499,7 +499,7 @@ void SolveQuadracticEqn(fInt A, fInt B, fInt C, fInt Roots[])
 */

/* Addition using two normal ints - Temporary - Use only for testing purposes?. */
fInt Add (int X, int Y)
static fInt Add (int X, int Y)
{
	fInt A, B, Sum;

@@ -512,13 +512,13 @@ fInt Add (int X, int Y)
}

/* Conversion Functions */
int GetReal (fInt A)
static int GetReal (fInt A)
{
	return (A.full >> SHIFT_AMOUNT);
}

/* Temporarily Disabled */
int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
static int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
{
	/* ROUNDING TEMPORARLY DISABLED
	int temp = A.full;
@@ -531,7 +531,7 @@ int GetRoundedValue(fInt A) /*For now, round the 3rd decimal place */
	return ConvertBackToInteger(A)/10000; /*Temporary - in case this was used somewhere else */
}

fInt Multiply (int X, int Y)
static fInt Multiply (int X, int Y)
{
	fInt A, B, Product;

@@ -543,7 +543,7 @@ fInt Multiply (int X, int Y)
	return Product;
}

fInt Divide (int X, int Y)
static fInt Divide (int X, int Y)
{
	fInt A, B, Quotient;

@@ -555,7 +555,7 @@ fInt Divide (int X, int Y)
	return Quotient;
}

int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
static int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole integers - Costly function */
{
	int dec[PRECISION];
	int i, scaledDecimal = 0, tmp = A.partial.decimal;
@@ -570,7 +570,7 @@ int uGetScaledDecimal (fInt A) /*Converts the fractional portion to whole intege
	return scaledDecimal;
}

int uPow(int base, int power)
static int uPow(int base, int power)
{
	if (power == 0)
		return 1;
@@ -578,7 +578,7 @@ int uPow(int base, int power)
		return (base)*uPow(base, power - 1);
}

fInt fAbs(fInt A)
static fInt fAbs(fInt A)
{
	if (A.partial.real < 0)
		return (fMultiply(A, ConvertToFraction(-1)));
@@ -586,7 +586,7 @@ fInt fAbs(fInt A)
		return A;
}

int uAbs(int X)
static int uAbs(int X)
{
	if (X < 0)
		return (X * -1);
@@ -594,7 +594,7 @@ int uAbs(int X)
		return X;
}

fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
static fInt fRoundUpByStepSize(fInt A, fInt fStepSize, bool error_term)
{
	fInt solution;