Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit dacb16b1 authored by Mathieu Desnoyers's avatar Mathieu Desnoyers Committed by Linus Torvalds
Browse files

[PATCH] i386 and x86_64 TSC set_cyc2ns_scale imprecision



I just found out that some precision is unnecessarily lost in the
arch/i386/kernel/timers/timer_tsc.c:set_cyc2ns_scale function.  It uses a
cpu_mhz parameter when it could use a cpu_khz.  In the specific case of an
Intel P4 running at 3001.171 Mhz, the truncation to 3001 Mhz leads to an
imprecision of 19 microseconds per second : this is very sad for a timer with
nearly nanosecond accuracy.

Fix the x86_64 architecture too.

Cc: george anzinger <george@mvista.com>
Cc: john stultz <johnstul@us.ibm.com>
Cc: Andi Kleen <ak@muc.de>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent bfd51626
Loading
Loading
Loading
Loading
+11 −6
Original line number Original line Diff line number Diff line
@@ -30,23 +30,28 @@ static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED;
 *  basic equation:
 *  basic equation:
 *		ns = cycles / (freq / ns_per_sec)
 *		ns = cycles / (freq / ns_per_sec)
 *		ns = cycles * (ns_per_sec / freq)
 *		ns = cycles * (ns_per_sec / freq)
 *		ns = cycles * (10^9 / (cpu_mhz * 10^6))
 *		ns = cycles * (10^9 / (cpu_khz * 10^3))
 *		ns = cycles * (10^3 / cpu_mhz)
 *		ns = cycles * (10^6 / cpu_khz)
 *
 *
 *	Then we use scaling math (suggested by george@mvista.com) to get:
 *	Then we use scaling math (suggested by george@mvista.com) to get:
 *		ns = cycles * (10^3 * SC / cpu_mhz) / SC
 *		ns = cycles * (10^6 * SC / cpu_khz) / SC
 *		ns = cycles * cyc2ns_scale / SC
 *		ns = cycles * cyc2ns_scale / SC
 *
 *
 *	And since SC is a constant power of two, we can convert the div
 *	And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better percision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *			-johnstul@us.ibm.com "math is hard, lets go shopping!"
 *			-johnstul@us.ibm.com "math is hard, lets go shopping!"
 */
 */
static unsigned long cyc2ns_scale;
static unsigned long cyc2ns_scale;
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */


static inline void set_cyc2ns_scale(unsigned long cpu_mhz)
static inline void set_cyc2ns_scale(unsigned long cpu_khz)
{
{
	cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz;
	cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
}
}


static inline unsigned long long cycles_2_ns(unsigned long long cyc)
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
@@ -163,7 +168,7 @@ static int __init init_hpet(char* override)
				printk("Detected %u.%03u MHz processor.\n",
				printk("Detected %u.%03u MHz processor.\n",
					cpu_khz / 1000, cpu_khz % 1000);
					cpu_khz / 1000, cpu_khz % 1000);
			}
			}
			set_cyc2ns_scale(cpu_khz/1000);
			set_cyc2ns_scale(cpu_khz);
		}
		}
		/* set this only when cpu_has_tsc */
		/* set this only when cpu_has_tsc */
		timer_hpet.read_timer = read_timer_tsc;
		timer_hpet.read_timer = read_timer_tsc;
+13 −8
Original line number Original line Diff line number Diff line
@@ -49,23 +49,28 @@ static seqlock_t monotonic_lock = SEQLOCK_UNLOCKED;
 *  basic equation:
 *  basic equation:
 *		ns = cycles / (freq / ns_per_sec)
 *		ns = cycles / (freq / ns_per_sec)
 *		ns = cycles * (ns_per_sec / freq)
 *		ns = cycles * (ns_per_sec / freq)
 *		ns = cycles * (10^9 / (cpu_mhz * 10^6))
 *		ns = cycles * (10^9 / (cpu_khz * 10^3))
 *		ns = cycles * (10^3 / cpu_mhz)
 *		ns = cycles * (10^6 / cpu_khz)
 *
 *
 *	Then we use scaling math (suggested by george@mvista.com) to get:
 *	Then we use scaling math (suggested by george@mvista.com) to get:
 *		ns = cycles * (10^3 * SC / cpu_mhz) / SC
 *		ns = cycles * (10^6 * SC / cpu_khz) / SC
 *		ns = cycles * cyc2ns_scale / SC
 *		ns = cycles * cyc2ns_scale / SC
 *
 *
 *	And since SC is a constant power of two, we can convert the div
 *	And since SC is a constant power of two, we can convert the div
 *  into a shift.
 *  into a shift.
 *
 *  We can use khz divisor instead of mhz to keep a better percision, since
 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
 *  (mathieu.desnoyers@polymtl.ca)
 *
 *			-johnstul@us.ibm.com "math is hard, lets go shopping!"
 *			-johnstul@us.ibm.com "math is hard, lets go shopping!"
 */
 */
static unsigned long cyc2ns_scale; 
static unsigned long cyc2ns_scale; 
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */


static inline void set_cyc2ns_scale(unsigned long cpu_mhz)
static inline void set_cyc2ns_scale(unsigned long cpu_khz)
{
{
	cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz;
	cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
}
}


static inline unsigned long long cycles_2_ns(unsigned long long cyc)
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
@@ -286,7 +291,7 @@ time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
		if (use_tsc) {
		if (use_tsc) {
			if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
			if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
				fast_gettimeoffset_quotient = cpufreq_scale(fast_gettimeoffset_ref, freq->new, ref_freq);
				fast_gettimeoffset_quotient = cpufreq_scale(fast_gettimeoffset_ref, freq->new, ref_freq);
				set_cyc2ns_scale(cpu_khz/1000);
				set_cyc2ns_scale(cpu_khz);
			}
			}
		}
		}
#endif
#endif
@@ -536,7 +541,7 @@ static int __init init_tsc(char* override)
				printk("Detected %u.%03u MHz processor.\n",
				printk("Detected %u.%03u MHz processor.\n",
					cpu_khz / 1000, cpu_khz % 1000);
					cpu_khz / 1000, cpu_khz % 1000);
			}
			}
			set_cyc2ns_scale(cpu_khz/1000);
			set_cyc2ns_scale(cpu_khz);
			return 0;
			return 0;
		}
		}
	}
	}
+4 −4
Original line number Original line Diff line number Diff line
@@ -481,9 +481,9 @@ static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
static unsigned int cyc2ns_scale;
static unsigned int cyc2ns_scale;
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */


static inline void set_cyc2ns_scale(unsigned long cpu_mhz)
static inline void set_cyc2ns_scale(unsigned long cpu_khz)
{
{
	cyc2ns_scale = (1000 << CYC2NS_SCALE_FACTOR)/cpu_mhz;
	cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
}
}


static inline unsigned long long cycles_2_ns(unsigned long long cyc)
static inline unsigned long long cycles_2_ns(unsigned long long cyc)
@@ -655,7 +655,7 @@ static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
			vxtime.tsc_quot = (1000L << 32) / cpu_khz;
			vxtime.tsc_quot = (1000L << 32) / cpu_khz;
	}
	}
	
	
	set_cyc2ns_scale(cpu_khz_ref / 1000);
	set_cyc2ns_scale(cpu_khz_ref);


	return 0;
	return 0;
}
}
@@ -939,7 +939,7 @@ void __init time_init(void)
	rdtscll_sync(&vxtime.last_tsc);
	rdtscll_sync(&vxtime.last_tsc);
	setup_irq(0, &irq0);
	setup_irq(0, &irq0);


	set_cyc2ns_scale(cpu_khz / 1000);
	set_cyc2ns_scale(cpu_khz);


#ifndef CONFIG_SMP
#ifndef CONFIG_SMP
	time_init_gtod();
	time_init_gtod();