Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit d911233f authored by Antonino A. Daplas's avatar Antonino A. Daplas Committed by Linus Torvalds
Browse files

[PATCH] skeletonfb: Documentation update



Update skeletonfb so it reflects recent (and somewhat old) changes of the
framebuffer layer.

Signed-off-by: default avatarAntonino Daplas <adaplas@pol.net>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent c549dc64
Loading
Loading
Loading
Loading
+383 −99
Original line number Diff line number Diff line
@@ -115,7 +115,8 @@ static struct fb_fix_screeninfo xxxfb_fix __initdata = {
    /*
     *  If your driver supports multiple boards or it supports multiple 
     *  framebuffers, you should make these arrays, or allocate them 
     *  dynamically (using kmalloc()). 
     *  dynamically using framebuffer_alloc() and free them with
     *  framebuffer_release().
     */ 
static struct fb_info info;

@@ -179,18 +180,31 @@ static int xxxfb_release(const struct fb_info *info, int user)
 *	intent to only test a mode and not actually set it. The stuff in 
 *	modedb.c is a example of this. If the var passed in is slightly 
 *	off by what the hardware can support then we alter the var PASSED in
 *	to what we can do. If the hardware doesn't support mode change 
 * 	a -EINVAL will be returned by the upper layers. You don't need to 
 *	implement this function then. If you hardware doesn't support 
 *	changing the resolution then this function is not needed. In this
 *	case the driver woudl just provide a var that represents the static
 *	state the screen is in.
 *	to what we can do.
 *
 *      For values that are off, this function must round them _up_ to the
 *      next value that is supported by the hardware.  If the value is
 *      greater than the highest value supported by the hardware, then this
 *      function must return -EINVAL.
 *
 *      Exception to the above rule:  Some drivers have a fixed mode, ie,
 *      the hardware is already set at boot up, and cannot be changed.  In
 *      this case, it is more acceptable that this function just return
 *      a copy of the currently working var (info->var). Better is to not
 *      implement this function, as the upper layer will do the copying
 *      of the current var for you.
 *
 *      Note:  This is the only function where the contents of var can be
 *      freely adjusted after the driver has been registered. If you find
 *      that you have code outside of this function that alters the content
 *      of var, then you are doing something wrong.  Note also that the
 *      contents of info->var must be left untouched at all times after
 *      driver registration.
 *
 *	Returns negative errno on error, or zero on success.
 */
static int xxxfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
    const struct xxx_par *par = (const struct xxx_par *) info->par;
    /* ... */
    return 0;	   	
}
@@ -204,14 +218,39 @@ static int xxxfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
 *	fb_fix_screeninfo stored in fb_info. It doesn't not alter var in 
 *	fb_info since we are using that data. This means we depend on the
 *	data in var inside fb_info to be supported by the hardware. 
 *	xxxfb_check_var is always called before xxxfb_set_par to ensure this.
 *
 *      This function is also used to recover/restore the hardware to a
 *      known working state.
 *
 *	xxxfb_check_var is always called before xxxfb_set_par to ensure that
 *      the contents of var is always valid.
 *
 *	Again if you can't change the resolution you don't need this function.
 *
 *      However, even if your hardware does not support mode changing,
 *      a set_par might be needed to at least initialize the hardware to
 *      a known working state, especially if it came back from another
 *      process that also modifies the same hardware, such as X.
 *
 *      If this is the case, a combination such as the following should work:
 *
 *      static int xxxfb_check_var(struct fb_var_screeninfo *var,
 *                                struct fb_info *info)
 *      {
 *              *var = info->var;
 *              return 0;
 *      }
 *
 *      static int xxxfb_set_par(struct fb_info *info)
 *      {
 *              init your hardware here
 *      }
 *
 *	Returns negative errno on error, or zero on success.
 */
static int xxxfb_set_par(struct fb_info *info)
{
    struct xxx_par *par = (struct xxx_par *) info->par;
    struct xxx_par *par = info->par;
    /* ... */
    return 0;	
}
@@ -258,45 +297,97 @@ static int xxxfb_setcolreg(unsigned regno, unsigned red, unsigned green,
     *   var->{color}.offset contains start of bitfield
     *   var->{color}.length contains length of bitfield
     *   {hardwarespecific} contains width of DAC
     *   cmap[X] is programmed to (X << red.offset) | (X << green.offset) | (X << blue.offset)
     *   pseudo_palette[X] is programmed to (X << red.offset) |
     *                                      (X << green.offset) |
     *                                      (X << blue.offset)
     *   RAMDAC[X] is programmed to (red, green, blue)
     *   color depth = SUM(var->{color}.length)
     *
     * Pseudocolor:
     *    uses offset = 0 && length = DAC register width.
     *    var->{color}.offset is 0
     *    var->{color}.length contains widht of DAC
     *    cmap is not used
     *    DAC[X] is programmed to (red, green, blue)
     *    var->{color}.length contains width of DAC or the number of unique
     *                        colors available (color depth)
     *    pseudo_palette is not used
     *    RAMDAC[X] is programmed to (red, green, blue)
     *    color depth = var->{color}.length
     *
     * Static pseudocolor:
     *    same as Pseudocolor, but the RAMDAC is not programmed (read-only)
     *
     * Mono01/Mono10:
     *    Has only 2 values, black on white or white on black (fg on bg),
     *    var->{color}.offset is 0
     *    white = (1 << var->{color}.length) - 1, black = 0
     *    pseudo_palette is not used
     *    RAMDAC does not exist
     *    color depth is always 2
     *
     * Truecolor:
     *    does not use RAMDAC (usually has 3 of them).
     *    var->{color}.offset contains start of bitfield
     *    var->{color}.length contains length of bitfield
     *    cmap is programmed to (red << red.offset) | (green << green.offset) |
     *                      (blue << blue.offset) | (transp << transp.offset)
     *    pseudo_palette is programmed to (red << red.offset) |
     *                                    (green << green.offset) |
     *                                    (blue << blue.offset) |
     *                                    (transp << transp.offset)
     *    RAMDAC does not exist
     *    color depth = SUM(var->{color}.length})
     *
     *  The color depth is used by fbcon for choosing the logo and also
     *  for color palette transformation if color depth < 4
     *
     *  As can be seen from the above, the field bits_per_pixel is _NOT_
     *  a criteria for describing the color visual.
     *
     *  A common mistake is assuming that bits_per_pixel <= 8 is pseudocolor,
     *  and higher than that, true/directcolor.  This is incorrect, one needs
     *  to look at the fix->visual.
     *
     *  Another common mistake is using bits_per_pixel to calculate the color
     *  depth.  The bits_per_pixel field does not directly translate to color
     *  depth. You have to compute for the color depth (using the color
     *  bitfields) and fix->visual as seen above.
     */

    /*
     * This is the point where the color is converted to something that
     * is acceptable by the hardware.
     */
#define CNVT_TOHW(val,width) ((((val)<<(width))+0x7FFF-(val))>>16)
    switch (info->fix.visual) {
       case FB_VISUAL_TRUECOLOR:
       case FB_VISUAL_PSEUDOCOLOR:
    red = CNVT_TOHW(red, info->var.red.length);
    green = CNVT_TOHW(green, info->var.green.length);
    blue = CNVT_TOHW(blue, info->var.blue.length);
    transp = CNVT_TOHW(transp, info->var.transp.length);
               break;
       case FB_VISUAL_DIRECTCOLOR:
	       /* example here assumes 8 bit DAC. Might be different 
		* for your hardware */	
               red = CNVT_TOHW(red, 8);       
               green = CNVT_TOHW(green, 8);
               blue = CNVT_TOHW(blue, 8);
               /* hey, there is bug in transp handling... */
               transp = CNVT_TOHW(transp, 8);
               break;
    }
#undef CNVT_TOHW
    /* Truecolor has hardware independent palette */
    if (info->fix.visual == FB_VISUAL_TRUECOLOR) {
    /*
     * This is the point where the function feeds the color to the hardware
     * palette after converting the colors to something acceptable by
     * the hardware. Note, only FB_VISUAL_DIRECTCOLOR and
     * FB_VISUAL_PSEUDOCOLOR visuals need to write to the hardware palette.
     * If you have code that writes to the hardware CLUT, and it's not
     * any of the above visuals, then you are doing something wrong.
     */
    if (info->fix.visual == FB_VISUAL_DIRECTCOLOR ||
	info->fix.visual == FB_VISUAL_TRUECOLOR)
	    write_{red|green|blue|transp}_to_clut();

    /* This is the point were you need to fill up the contents of
     * info->pseudo_palette. This structure is used _only_ by fbcon, thus
     * it only contains 16 entries to match the number of colors supported
     * by the console. The pseudo_palette is used only if the visual is
     * in directcolor or truecolor mode.  With other visuals, the
     * pseudo_palette is not used. (This might change in the future.)
     *
     * The contents of the pseudo_palette is in raw pixel format.  Ie, each
     * entry can be written directly to the framebuffer without any conversion.
     * The pseudo_palette is (void *).  However, if using the generic
     * drawing functions (cfb_imageblit, cfb_fillrect), the pseudo_palette
     * must be casted to (u32 *) _regardless_ of the bits per pixel. If the
     * driver is using its own drawing functions, then it can use whatever
     * size it wants.
     */
    if (info->fix.visual == FB_VISUAL_TRUECOLOR ||
	info->fix.visual == FB_VISUAL_DIRECTCOLOR) {
	    u32 v;

	    if (regno >= 16)
@@ -307,21 +398,9 @@ static int xxxfb_setcolreg(unsigned regno, unsigned red, unsigned green,
		    (blue << info->var.blue.offset) |
		    (transp << info->var.transp.offset);

       switch (info->var.bits_per_pixel) {
		case 8:
			/* Yes some hand held devices have this. */ 
           		((u8*)(info->pseudo_palette))[regno] = v;
			break;	
   		case 16:
           		((u16*)(info->pseudo_palette))[regno] = v;
			break;
		case 24:
		case 32:	
	    ((u32*)(info->pseudo_palette))[regno] = v;
			break;
       }
       return 0;
    }

    /* ... */
    return 0;
}
@@ -340,6 +419,17 @@ static int xxxfb_setcolreg(unsigned regno, unsigned red, unsigned green,
static int xxxfb_pan_display(struct fb_var_screeninfo *var,
			     const struct fb_info *info)
{
    /*
     * If your hardware does not support panning, _do_ _not_ implement this
     * function. Creating a dummy function will just confuse user apps.
     */

    /*
     * Note that even if this function is fully functional, a setting of
     * 0 in both xpanstep and ypanstep means that this function will never
     * get called.
     */

    /* ... */
    return 0;
}
@@ -349,15 +439,20 @@ static int xxxfb_pan_display(struct fb_var_screeninfo *var,
 *      @blank_mode: the blank mode we want. 
 *      @info: frame buffer structure that represents a single frame buffer
 *
 *      Blank the screen if blank_mode != 0, else unblank. Return 0 if
 *      blanking succeeded, != 0 if un-/blanking failed due to e.g. a 
 *      video mode which doesn't support it. Implements VESA suspend
 *      and powerdown modes on hardware that supports disabling hsync/vsync:
 *      blank_mode == 2: suspend vsync
 *      blank_mode == 3: suspend hsync
 *      blank_mode == 4: powerdown
 *      Blank the screen if blank_mode != FB_BLANK_UNBLANK, else unblank.
 *      Return 0 if blanking succeeded, != 0 if un-/blanking failed due to
 *      e.g. a video mode which doesn't support it.
 *
 *      Returns negative errno on error, or zero on success.
 *      Implements VESA suspend and powerdown modes on hardware that supports
 *      disabling hsync/vsync:
 *
 *      FB_BLANK_NORMAL = display is blanked, syncs are on.
 *      FB_BLANK_HSYNC_SUSPEND = hsync off
 *      FB_BLANK_VSYNC_SUSPEND = vsync off
 *      FB_BLANK_POWERDOWN =  hsync and vsync off
 *
 *      If implementing this function, at least support FB_BLANK_UNBLANK.
 *      Return !0 for any modes that are unimplemented.
 *
 */
static int xxxfb_blank(int blank_mode, const struct fb_info *info)
@@ -454,6 +549,14 @@ void xxxfb_imageblit(struct fb_info *p, const struct fb_image *image)
 *	@data: The actual data used to construct the image on the display.
 *	@cmap: The colormap used for color images.   
 */

/*
 * The generic function, cfb_imageblit, expects that the bitmap scanlines are
 * padded to the next byte.  Most hardware accelerators may require padding to
 * the next u16 or the next u32.  If that is the case, the driver can specify
 * this by setting info->pixmap.scan_align = 2 or 4.  See a more
 * comprehensive description of the pixmap below.
 */
}

/**
@@ -517,6 +620,7 @@ int xxxfb_cursor(struct fb_info *info, struct fb_cursor *cursor)
 */
void xxxfb_rotate(struct fb_info *info, int angle)
{
/* Will be deprecated */
}

/**
@@ -540,6 +644,9 @@ void xxxfb_poll(struct fb_info *info, poll_table *wait)
 *		     so we can have consistent display output. 
 *
 *      @info: frame buffer structure that represents a single frame buffer
 *
 *      If the driver has implemented its own hardware-based drawing function,
 *      implementing this function is highly recommended.
 */
void xxxfb_sync(struct fb_info *info)
{
@@ -549,20 +656,25 @@ void xxxfb_sync(struct fb_info *info)
     *  Initialization
     */

int __init xxxfb_init(void)
/* static int __init xxfb_probe (struct device *device) -- for platform devs */
static int __init xxxfb_probe(struct pci_dev *dev,
			      const_struct pci_device_id *ent)
{
    struct fb_info *info;
    struct xxx_par *par;
    struct device = &dev->dev; /* for pci drivers */
    int cmap_len, retval;	
   
    /*
     *  For kernel boot options (in 'video=xxxfb:<options>' format)
     * Dynamically allocate info and par
     */
#ifndef MODULE
    char *option = NULL;
    info = framebuffer_alloc(sizeof(struct xxx_par), device);

    if (fb_get_options("xxxfb", &option))
	    return -ENODEV;
    xxxfb_setup(option);
#endif
    if (!info) {
	    /* goto error path */
    }

    par = info->par;

    /* 
     * Here we set the screen_base to the virtual memory address
@@ -570,18 +682,87 @@ int __init xxxfb_init(void)
     * from the bus layer and then translate it to virtual memory
     * space via ioremap. Consult ioport.h. 
     */
    info.screen_base = framebuffer_virtual_memory;	
    info.fbops = &xxxfb_ops;
    info.fix = xxxfb_fix;
    info.pseudo_palette = pseudo_palette;

    info->screen_base = framebuffer_virtual_memory;
    info->fbops = &xxxfb_ops;
    info->fix = xxxfb_fix; /* this will be the only time xxxfb_fix will be
			    * used, so mark it as __initdata
			    */
    info->pseudo_palette = pseudo_palette; /* The pseudopalette is an
					    * 16-member array
					    */
    /*
     * Set up flags to indicate what sort of acceleration your
     * driver can provide (pan/wrap/copyarea/etc.) and whether it
     * is a module -- see FBINFO_* in include/linux/fb.h
     *
     * If your hardware can support any of the hardware accelerated functions
     * fbcon performance will improve if info->flags is set properly.
     *
     * FBINFO_HWACCEL_COPYAREA - hardware moves
     * FBINFO_HWACCEL_FILLRECT - hardware fills
     * FBINFO_HWACCEL_IMAGEBLIT - hardware mono->color expansion
     * FBINFO_HWACCEL_YPAN - hardware can pan display in y-axis
     * FBINFO_HWACCEL_YWRAP - hardware can wrap display in y-axis
     * FBINFO_HWACCEL_DISABLED - supports hardware accels, but disabled
     * FBINFO_READS_FAST - if set, prefer moves over mono->color expansion
     * FBINFO_MISC_TILEBLITTING - hardware can do tile blits
     *
     * NOTE: These are for fbcon use only.
     */
    info->flags = FBINFO_DEFAULT;

/********************* This stage is optional ******************************/
     /*
     * The struct pixmap is a scratch pad for the drawing functions. This
     * is where the monochrome bitmap is constructed by the higher layers
     * and then passed to the accelerator.  For drivers that uses
     * cfb_imageblit, you can skip this part.  For those that have a more
     * rigorous requirement, this stage is needed
     */

    /* PIXMAP_SIZE should be small enough to optimize drawing, but not
     * large enough that memory is wasted.  A safe size is
     * (max_xres * max_font_height/8). max_xres is driver dependent,
     * max_font_height is 32.
     */
    info->pixmap.addr = kmalloc(PIXMAP_SIZE, GFP_KERNEL);
    if (!info->pixmap.addr) {
	    /* goto error */
    }

    info->pixmap.size = PIXMAP_SIZE;

    /*
     * FB_PIXMAP_SYSTEM - memory is in system ram
     * FB_PIXMAP_IO     - memory is iomapped
     * FB_PIXMAP_SYNC   - if set, will call fb_sync() per access to pixmap,
     *                    usually if FB_PIXMAP_IO is set.
     *
     * Currently, FB_PIXMAP_IO is unimplemented.
     */
    info->pixmap.flags = FB_PIXMAP_SYSTEM;

    /*
     * scan_align is the number of padding for each scanline.  It is in bytes.
     * Thus for accelerators that need padding to the next u32, put 4 here.
     */
    info.flags = FBINFO_DEFAULT;
    info.par = current_par;
    info->pixmap.scan_align = 4;

    /*
     * buf_align is the amount to be padded for the buffer. For example,
     * the i810fb needs a scan_align of 2 but expects it to be fed with
     * dwords, so a buf_align = 4 is required.
     */
    info->pixmap.buf_align = 4;

    /* access_align is how many bits can be accessed from the framebuffer
     * ie. some epson cards allow 16-bit access only.  Most drivers will
     * be safe with u32 here.
     *
     * NOTE: This field is currently unused.
     */
    info->pixmap.scan_align = 32
/***************************** End optional stage ***************************/

    /*
     * This should give a reasonable default video mode. The following is
@@ -590,43 +771,146 @@ int __init xxxfb_init(void)
    if (!mode_option)
	mode_option = "640x480@60";	 	

    retval = fb_find_mode(&info.var, &info, mode_option, NULL, 0, NULL, 8);
    retval = fb_find_mode(info->var, info, mode_option, NULL, 0, NULL, 8);
  
    if (!retval || retval == 4)
	return -EINVAL;			

    /* This has to been done !!! */	
    fb_alloc_cmap(&info.cmap, cmap_len, 0);
    fb_alloc_cmap(info->cmap, cmap_len, 0);
	
    /* 
     * The following is done in the case of having hardware with a static 
     * mode. If we are setting the mode ourselves we don't call this. 
     */	
    info.var = xxxfb_var;
    info->var = xxxfb_var;

    if (register_framebuffer(&info) < 0)
    /*
     * For drivers that can...
     */
    xxxfb_check_var(&info->var, info);

    /*
     * Does a call to fb_set_par() before register_framebuffer needed?  This
     * will depend on you and the hardware.  If you are sure that your driver
     * is the only device in the system, a call to fb_set_par() is safe.
     *
     * Hardware in x86 systems has a VGA core.  Calling set_par() at this
     * point will corrupt the VGA console, so it might be safer to skip a
     * call to set_par here and just allow fbcon to do it for you.
     */
    /* xxxfb_set_par(info); */

    if (register_framebuffer(info) < 0)
	return -EINVAL;
    printk(KERN_INFO "fb%d: %s frame buffer device\n", info.node,
	   info.fix.id);
    printk(KERN_INFO "fb%d: %s frame buffer device\n", info->node,
	   info->fix.id);
    pci_set_drvdata(dev, info); /* or dev_set_drvdata(device, info) */
    return 0;
}

    /*
     *  Cleanup
     */

static void __exit xxxfb_cleanup(void)
/* static void __exit xxxfb_remove(struct device *device) */
static void __exit xxxfb_remove(struct pci_dev *dev)
{
    /*
     *  If your driver supports multiple boards, you should unregister and
     *  clean up all instances.
     */
	struct fb_info *info = pci_get_drv_data(dev);
	/* or dev_get_drv_data(device); */

	if (info) {
		unregister_framebuffer(info);
		fb_dealloc_cmap(&info.cmap);
		/* ... */
		framebuffer_release(info);
	}

	return 0;
}

#if CONFIG_PCI
/* For PCI drivers */
static struct pci_driver xxxfb_driver = {
	.name =		"xxxfb",
	.id_table =	xxxfb_devices,
	.probe =	xxxfb_probe,
	.remove =	__devexit_p(xxxfb_remove),
	.suspend =      xxxfb_suspend, /* optional */
	.resume =       xxxfb_resume,  /* optional */
};

static int __init xxxfb_init(void)
{
	/*
	 *  For kernel boot options (in 'video=xxxfb:<options>' format)
	 */
#ifndef MODULE
	char *option = NULL;

	if (fb_get_options("xxxfb", &option))
		return -ENODEV;
	xxxfb_setup(option);
#endif

	return pci_register_driver(&xxxfb_driver);
}

static void __exit xxxfb_exit(void)
{
	pci_unregister_driver(&xxxfb_driver);
}
#else
#include <linux/platform_device.h>
/* for platform devices */
static struct device_driver xxxfb_driver = {
	.name = "xxxfb",
	.bus  = &platform_bus_type,
	.probe = xxxfb_probe,
	.remove = xxxfb_remove,
	.suspend = xxxfb_suspend, /* optional */
	.resume = xxxfb_resume,   /* optional */
};

static struct platform_device xxxfb_device = {
	.name = "xxxfb",
};

static int __init xxxfb_init(void)
{
	int ret;
	/*
	 *  For kernel boot options (in 'video=xxxfb:<options>' format)
	 */
#ifndef MODULE
	char *option = NULL;

	if (fb_get_options("xxxfb", &option))
		return -ENODEV;
	xxxfb_setup(option);
#endif
	ret = driver_register(&xxxfb_driver);

	if (!ret) {
		ret = platform_device_register(&xxxfb_device);
		if (ret)
			driver_unregister(&xxxfb_driver);
	}

	return ret;
}

static void __exit xxxfb_exit(void)
{
	platform_device_unregister(&xxxfb_device);
	driver_unregister(&xxxfb_driver);
}
#endif

MODULE_LICENSE("GPL");
module_init(xxxfb_init);
module_exit(xxxfb_exit);


    /*
     *  Setup
     */