Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 72cabd41 authored by Jason A. Donenfeld's avatar Jason A. Donenfeld Committed by Alistair Strachan
Browse files

UPSTREAM: siphash: implement HalfSipHash1-3 for hash tables



HalfSipHash, or hsiphash, is a shortened version of SipHash, which
generates 32-bit outputs using a weaker 64-bit key. It has *much* lower
security margins, and shouldn't be used for anything too sensitive, but
it could be used as a hashtable key function replacement, if the output
is never exposed, and if the security requirement is not too high.

The goal is to make this something that performance-critical jhash users
would be willing to use.

On 64-bit machines, HalfSipHash1-3 is slower than SipHash1-3, so we alias
SipHash1-3 to HalfSipHash1-3 on those systems.

64-bit x86_64:
[    0.509409] test_siphash:     SipHash2-4 cycles: 4049181
[    0.510650] test_siphash:     SipHash1-3 cycles: 2512884
[    0.512205] test_siphash: HalfSipHash1-3 cycles: 3429920
[    0.512904] test_siphash:    JenkinsHash cycles:  978267
So, we map hsiphash() -> SipHash1-3

32-bit x86:
[    0.509868] test_siphash:     SipHash2-4 cycles: 14812892
[    0.513601] test_siphash:     SipHash1-3 cycles:  9510710
[    0.515263] test_siphash: HalfSipHash1-3 cycles:  3856157
[    0.515952] test_siphash:    JenkinsHash cycles:  1148567
So, we map hsiphash() -> HalfSipHash1-3

hsiphash() is roughly 3 times slower than jhash(), but comes with a
considerable security improvement.

Signed-off-by: default avatarJason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: default avatarJean-Philippe Aumasson <jeanphilippe.aumasson@gmail.com>
Signed-off-by: default avatarDavid S. Miller <davem@davemloft.net>
(cherry picked from commit 1ae2324f732c9c4e2fa4ebd885fa1001b70d52e1)
Signed-off-by: default avatarSandeep Patil <sspatil@android.com>

Bug: 78533979
Test: Build and boot cuttlefish
Change-Id: I5a80353e0a316e36bd432d5a00eaa0948a6f4de6
parent c626ddea
Loading
Loading
Loading
Loading
+75 −0
Original line number Original line Diff line number Diff line
@@ -98,3 +98,78 @@ u64 h = siphash(&combined, offsetofend(typeof(combined), dport), &secret);


Read the SipHash paper if you're interested in learning more:
Read the SipHash paper if you're interested in learning more:
https://131002.net/siphash/siphash.pdf
https://131002.net/siphash/siphash.pdf


~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~=~

HalfSipHash - SipHash's insecure younger cousin
-----------------------------------------------
Written by Jason A. Donenfeld <jason@zx2c4.com>

On the off-chance that SipHash is not fast enough for your needs, you might be
able to justify using HalfSipHash, a terrifying but potentially useful
possibility. HalfSipHash cuts SipHash's rounds down from "2-4" to "1-3" and,
even scarier, uses an easily brute-forcable 64-bit key (with a 32-bit output)
instead of SipHash's 128-bit key. However, this may appeal to some
high-performance `jhash` users.

Danger!

Do not ever use HalfSipHash except for as a hashtable key function, and only
then when you can be absolutely certain that the outputs will never be
transmitted out of the kernel. This is only remotely useful over `jhash` as a
means of mitigating hashtable flooding denial of service attacks.

1. Generating a key

Keys should always be generated from a cryptographically secure source of
random numbers, either using get_random_bytes or get_random_once:

hsiphash_key_t key;
get_random_bytes(&key, sizeof(key));

If you're not deriving your key from here, you're doing it wrong.

2. Using the functions

There are two variants of the function, one that takes a list of integers, and
one that takes a buffer:

u32 hsiphash(const void *data, size_t len, const hsiphash_key_t *key);

And:

u32 hsiphash_1u32(u32, const hsiphash_key_t *key);
u32 hsiphash_2u32(u32, u32, const hsiphash_key_t *key);
u32 hsiphash_3u32(u32, u32, u32, const hsiphash_key_t *key);
u32 hsiphash_4u32(u32, u32, u32, u32, const hsiphash_key_t *key);

If you pass the generic hsiphash function something of a constant length, it
will constant fold at compile-time and automatically choose one of the
optimized functions.

3. Hashtable key function usage:

struct some_hashtable {
	DECLARE_HASHTABLE(hashtable, 8);
	hsiphash_key_t key;
};

void init_hashtable(struct some_hashtable *table)
{
	get_random_bytes(&table->key, sizeof(table->key));
}

static inline hlist_head *some_hashtable_bucket(struct some_hashtable *table, struct interesting_input *input)
{
	return &table->hashtable[hsiphash(input, sizeof(*input), &table->key) & (HASH_SIZE(table->hashtable) - 1)];
}

You may then iterate like usual over the returned hash bucket.

4. Performance

HalfSipHash is roughly 3 times slower than JenkinsHash. For many replacements,
this will not be a problem, as the hashtable lookup isn't the bottleneck. And
in general, this is probably a good sacrifice to make for the security and DoS
resistance of HalfSipHash.
+56 −1
Original line number Original line Diff line number Diff line
@@ -5,7 +5,9 @@
 * SipHash: a fast short-input PRF
 * SipHash: a fast short-input PRF
 * https://131002.net/siphash/
 * https://131002.net/siphash/
 *
 *
 * This implementation is specifically for SipHash2-4.
 * This implementation is specifically for SipHash2-4 for a secure PRF
 * and HalfSipHash1-3/SipHash1-3 for an insecure PRF only suitable for
 * hashtables.
 */
 */


#ifndef _LINUX_SIPHASH_H
#ifndef _LINUX_SIPHASH_H
@@ -82,4 +84,57 @@ static inline u64 siphash(const void *data, size_t len,
	return ___siphash_aligned(data, len, key);
	return ___siphash_aligned(data, len, key);
}
}


#define HSIPHASH_ALIGNMENT __alignof__(unsigned long)
typedef struct {
	unsigned long key[2];
} hsiphash_key_t;

u32 __hsiphash_aligned(const void *data, size_t len,
		       const hsiphash_key_t *key);
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
u32 __hsiphash_unaligned(const void *data, size_t len,
			 const hsiphash_key_t *key);
#endif

u32 hsiphash_1u32(const u32 a, const hsiphash_key_t *key);
u32 hsiphash_2u32(const u32 a, const u32 b, const hsiphash_key_t *key);
u32 hsiphash_3u32(const u32 a, const u32 b, const u32 c,
		  const hsiphash_key_t *key);
u32 hsiphash_4u32(const u32 a, const u32 b, const u32 c, const u32 d,
		  const hsiphash_key_t *key);

static inline u32 ___hsiphash_aligned(const __le32 *data, size_t len,
				      const hsiphash_key_t *key)
{
	if (__builtin_constant_p(len) && len == 4)
		return hsiphash_1u32(le32_to_cpu(data[0]), key);
	if (__builtin_constant_p(len) && len == 8)
		return hsiphash_2u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]),
				     key);
	if (__builtin_constant_p(len) && len == 12)
		return hsiphash_3u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]),
				     le32_to_cpu(data[2]), key);
	if (__builtin_constant_p(len) && len == 16)
		return hsiphash_4u32(le32_to_cpu(data[0]), le32_to_cpu(data[1]),
				     le32_to_cpu(data[2]), le32_to_cpu(data[3]),
				     key);
	return __hsiphash_aligned(data, len, key);
}

/**
 * hsiphash - compute 32-bit hsiphash PRF value
 * @data: buffer to hash
 * @size: size of @data
 * @key: the hsiphash key
 */
static inline u32 hsiphash(const void *data, size_t len,
			   const hsiphash_key_t *key)
{
#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
	if (!IS_ALIGNED((unsigned long)data, HSIPHASH_ALIGNMENT))
		return __hsiphash_unaligned(data, len, key);
#endif
	return ___hsiphash_aligned(data, len, key);
}

#endif /* _LINUX_SIPHASH_H */
#endif /* _LINUX_SIPHASH_H */
+320 −1
Original line number Original line Diff line number Diff line
@@ -5,7 +5,9 @@
 * SipHash: a fast short-input PRF
 * SipHash: a fast short-input PRF
 * https://131002.net/siphash/
 * https://131002.net/siphash/
 *
 *
 * This implementation is specifically for SipHash2-4.
 * This implementation is specifically for SipHash2-4 for a secure PRF
 * and HalfSipHash1-3/SipHash1-3 for an insecure PRF only suitable for
 * hashtables.
 */
 */


#include <linux/siphash.h>
#include <linux/siphash.h>
@@ -230,3 +232,320 @@ u64 siphash_3u32(const u32 first, const u32 second, const u32 third,
	POSTAMBLE
	POSTAMBLE
}
}
EXPORT_SYMBOL(siphash_3u32);
EXPORT_SYMBOL(siphash_3u32);

#if BITS_PER_LONG == 64
/* Note that on 64-bit, we make HalfSipHash1-3 actually be SipHash1-3, for
 * performance reasons. On 32-bit, below, we actually implement HalfSipHash1-3.
 */

#define HSIPROUND SIPROUND
#define HPREAMBLE(len) PREAMBLE(len)
#define HPOSTAMBLE \
	v3 ^= b; \
	HSIPROUND; \
	v0 ^= b; \
	v2 ^= 0xff; \
	HSIPROUND; \
	HSIPROUND; \
	HSIPROUND; \
	return (v0 ^ v1) ^ (v2 ^ v3);

u32 __hsiphash_aligned(const void *data, size_t len, const hsiphash_key_t *key)
{
	const u8 *end = data + len - (len % sizeof(u64));
	const u8 left = len & (sizeof(u64) - 1);
	u64 m;
	HPREAMBLE(len)
	for (; data != end; data += sizeof(u64)) {
		m = le64_to_cpup(data);
		v3 ^= m;
		HSIPROUND;
		v0 ^= m;
	}
#if defined(CONFIG_DCACHE_WORD_ACCESS) && BITS_PER_LONG == 64
	if (left)
		b |= le64_to_cpu((__force __le64)(load_unaligned_zeropad(data) &
						  bytemask_from_count(left)));
#else
	switch (left) {
	case 7: b |= ((u64)end[6]) << 48;
	case 6: b |= ((u64)end[5]) << 40;
	case 5: b |= ((u64)end[4]) << 32;
	case 4: b |= le32_to_cpup(data); break;
	case 3: b |= ((u64)end[2]) << 16;
	case 2: b |= le16_to_cpup(data); break;
	case 1: b |= end[0];
	}
#endif
	HPOSTAMBLE
}
EXPORT_SYMBOL(__hsiphash_aligned);

#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
u32 __hsiphash_unaligned(const void *data, size_t len,
			 const hsiphash_key_t *key)
{
	const u8 *end = data + len - (len % sizeof(u64));
	const u8 left = len & (sizeof(u64) - 1);
	u64 m;
	HPREAMBLE(len)
	for (; data != end; data += sizeof(u64)) {
		m = get_unaligned_le64(data);
		v3 ^= m;
		HSIPROUND;
		v0 ^= m;
	}
#if defined(CONFIG_DCACHE_WORD_ACCESS) && BITS_PER_LONG == 64
	if (left)
		b |= le64_to_cpu((__force __le64)(load_unaligned_zeropad(data) &
						  bytemask_from_count(left)));
#else
	switch (left) {
	case 7: b |= ((u64)end[6]) << 48;
	case 6: b |= ((u64)end[5]) << 40;
	case 5: b |= ((u64)end[4]) << 32;
	case 4: b |= get_unaligned_le32(end); break;
	case 3: b |= ((u64)end[2]) << 16;
	case 2: b |= get_unaligned_le16(end); break;
	case 1: b |= end[0];
	}
#endif
	HPOSTAMBLE
}
EXPORT_SYMBOL(__hsiphash_unaligned);
#endif

/**
 * hsiphash_1u32 - compute 64-bit hsiphash PRF value of a u32
 * @first: first u32
 * @key: the hsiphash key
 */
u32 hsiphash_1u32(const u32 first, const hsiphash_key_t *key)
{
	HPREAMBLE(4)
	b |= first;
	HPOSTAMBLE
}
EXPORT_SYMBOL(hsiphash_1u32);

/**
 * hsiphash_2u32 - compute 32-bit hsiphash PRF value of 2 u32
 * @first: first u32
 * @second: second u32
 * @key: the hsiphash key
 */
u32 hsiphash_2u32(const u32 first, const u32 second, const hsiphash_key_t *key)
{
	u64 combined = (u64)second << 32 | first;
	HPREAMBLE(8)
	v3 ^= combined;
	HSIPROUND;
	v0 ^= combined;
	HPOSTAMBLE
}
EXPORT_SYMBOL(hsiphash_2u32);

/**
 * hsiphash_3u32 - compute 32-bit hsiphash PRF value of 3 u32
 * @first: first u32
 * @second: second u32
 * @third: third u32
 * @key: the hsiphash key
 */
u32 hsiphash_3u32(const u32 first, const u32 second, const u32 third,
		  const hsiphash_key_t *key)
{
	u64 combined = (u64)second << 32 | first;
	HPREAMBLE(12)
	v3 ^= combined;
	HSIPROUND;
	v0 ^= combined;
	b |= third;
	HPOSTAMBLE
}
EXPORT_SYMBOL(hsiphash_3u32);

/**
 * hsiphash_4u32 - compute 32-bit hsiphash PRF value of 4 u32
 * @first: first u32
 * @second: second u32
 * @third: third u32
 * @forth: forth u32
 * @key: the hsiphash key
 */
u32 hsiphash_4u32(const u32 first, const u32 second, const u32 third,
		  const u32 forth, const hsiphash_key_t *key)
{
	u64 combined = (u64)second << 32 | first;
	HPREAMBLE(16)
	v3 ^= combined;
	HSIPROUND;
	v0 ^= combined;
	combined = (u64)forth << 32 | third;
	v3 ^= combined;
	HSIPROUND;
	v0 ^= combined;
	HPOSTAMBLE
}
EXPORT_SYMBOL(hsiphash_4u32);
#else
#define HSIPROUND \
	do { \
	v0 += v1; v1 = rol32(v1, 5); v1 ^= v0; v0 = rol32(v0, 16); \
	v2 += v3; v3 = rol32(v3, 8); v3 ^= v2; \
	v0 += v3; v3 = rol32(v3, 7); v3 ^= v0; \
	v2 += v1; v1 = rol32(v1, 13); v1 ^= v2; v2 = rol32(v2, 16); \
	} while (0)

#define HPREAMBLE(len) \
	u32 v0 = 0; \
	u32 v1 = 0; \
	u32 v2 = 0x6c796765U; \
	u32 v3 = 0x74656462U; \
	u32 b = ((u32)(len)) << 24; \
	v3 ^= key->key[1]; \
	v2 ^= key->key[0]; \
	v1 ^= key->key[1]; \
	v0 ^= key->key[0];

#define HPOSTAMBLE \
	v3 ^= b; \
	HSIPROUND; \
	v0 ^= b; \
	v2 ^= 0xff; \
	HSIPROUND; \
	HSIPROUND; \
	HSIPROUND; \
	return v1 ^ v3;

u32 __hsiphash_aligned(const void *data, size_t len, const hsiphash_key_t *key)
{
	const u8 *end = data + len - (len % sizeof(u32));
	const u8 left = len & (sizeof(u32) - 1);
	u32 m;
	HPREAMBLE(len)
	for (; data != end; data += sizeof(u32)) {
		m = le32_to_cpup(data);
		v3 ^= m;
		HSIPROUND;
		v0 ^= m;
	}
	switch (left) {
	case 3: b |= ((u32)end[2]) << 16;
	case 2: b |= le16_to_cpup(data); break;
	case 1: b |= end[0];
	}
	HPOSTAMBLE
}
EXPORT_SYMBOL(__hsiphash_aligned);

#ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
u32 __hsiphash_unaligned(const void *data, size_t len,
			 const hsiphash_key_t *key)
{
	const u8 *end = data + len - (len % sizeof(u32));
	const u8 left = len & (sizeof(u32) - 1);
	u32 m;
	HPREAMBLE(len)
	for (; data != end; data += sizeof(u32)) {
		m = get_unaligned_le32(data);
		v3 ^= m;
		HSIPROUND;
		v0 ^= m;
	}
	switch (left) {
	case 3: b |= ((u32)end[2]) << 16;
	case 2: b |= get_unaligned_le16(end); break;
	case 1: b |= end[0];
	}
	HPOSTAMBLE
}
EXPORT_SYMBOL(__hsiphash_unaligned);
#endif

/**
 * hsiphash_1u32 - compute 32-bit hsiphash PRF value of a u32
 * @first: first u32
 * @key: the hsiphash key
 */
u32 hsiphash_1u32(const u32 first, const hsiphash_key_t *key)
{
	HPREAMBLE(4)
	v3 ^= first;
	HSIPROUND;
	v0 ^= first;
	HPOSTAMBLE
}
EXPORT_SYMBOL(hsiphash_1u32);

/**
 * hsiphash_2u32 - compute 32-bit hsiphash PRF value of 2 u32
 * @first: first u32
 * @second: second u32
 * @key: the hsiphash key
 */
u32 hsiphash_2u32(const u32 first, const u32 second, const hsiphash_key_t *key)
{
	HPREAMBLE(8)
	v3 ^= first;
	HSIPROUND;
	v0 ^= first;
	v3 ^= second;
	HSIPROUND;
	v0 ^= second;
	HPOSTAMBLE
}
EXPORT_SYMBOL(hsiphash_2u32);

/**
 * hsiphash_3u32 - compute 32-bit hsiphash PRF value of 3 u32
 * @first: first u32
 * @second: second u32
 * @third: third u32
 * @key: the hsiphash key
 */
u32 hsiphash_3u32(const u32 first, const u32 second, const u32 third,
		  const hsiphash_key_t *key)
{
	HPREAMBLE(12)
	v3 ^= first;
	HSIPROUND;
	v0 ^= first;
	v3 ^= second;
	HSIPROUND;
	v0 ^= second;
	v3 ^= third;
	HSIPROUND;
	v0 ^= third;
	HPOSTAMBLE
}
EXPORT_SYMBOL(hsiphash_3u32);

/**
 * hsiphash_4u32 - compute 32-bit hsiphash PRF value of 4 u32
 * @first: first u32
 * @second: second u32
 * @third: third u32
 * @forth: forth u32
 * @key: the hsiphash key
 */
u32 hsiphash_4u32(const u32 first, const u32 second, const u32 third,
		  const u32 forth, const hsiphash_key_t *key)
{
	HPREAMBLE(16)
	v3 ^= first;
	HSIPROUND;
	v0 ^= first;
	v3 ^= second;
	HSIPROUND;
	v0 ^= second;
	v3 ^= third;
	HSIPROUND;
	v0 ^= third;
	v3 ^= forth;
	HSIPROUND;
	v0 ^= forth;
	HPOSTAMBLE
}
EXPORT_SYMBOL(hsiphash_4u32);
#endif
+95 −3
Original line number Original line Diff line number Diff line
@@ -7,7 +7,9 @@
 * SipHash: a fast short-input PRF
 * SipHash: a fast short-input PRF
 * https://131002.net/siphash/
 * https://131002.net/siphash/
 *
 *
 * This implementation is specifically for SipHash2-4.
 * This implementation is specifically for SipHash2-4 for a secure PRF
 * and HalfSipHash1-3/SipHash1-3 for an insecure PRF only suitable for
 * hashtables.
 */
 */


#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
@@ -18,8 +20,8 @@
#include <linux/errno.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/module.h>


/* Test vectors taken from official reference source available at:
/* Test vectors taken from reference source available at:
 *     https://131002.net/siphash/siphash24.c
 *     https://github.com/veorq/SipHash
 */
 */


static const siphash_key_t test_key_siphash =
static const siphash_key_t test_key_siphash =
@@ -50,6 +52,64 @@ static const u64 test_vectors_siphash[64] = {
	0x958a324ceb064572ULL
	0x958a324ceb064572ULL
};
};


#if BITS_PER_LONG == 64
static const hsiphash_key_t test_key_hsiphash =
	{{ 0x0706050403020100ULL, 0x0f0e0d0c0b0a0908ULL }};

static const u32 test_vectors_hsiphash[64] = {
	0x050fc4dcU, 0x7d57ca93U, 0x4dc7d44dU,
	0xe7ddf7fbU, 0x88d38328U, 0x49533b67U,
	0xc59f22a7U, 0x9bb11140U, 0x8d299a8eU,
	0x6c063de4U, 0x92ff097fU, 0xf94dc352U,
	0x57b4d9a2U, 0x1229ffa7U, 0xc0f95d34U,
	0x2a519956U, 0x7d908b66U, 0x63dbd80cU,
	0xb473e63eU, 0x8d297d1cU, 0xa6cce040U,
	0x2b45f844U, 0xa320872eU, 0xdae6c123U,
	0x67349c8cU, 0x705b0979U, 0xca9913a5U,
	0x4ade3b35U, 0xef6cd00dU, 0x4ab1e1f4U,
	0x43c5e663U, 0x8c21d1bcU, 0x16a7b60dU,
	0x7a8ff9bfU, 0x1f2a753eU, 0xbf186b91U,
	0xada26206U, 0xa3c33057U, 0xae3a36a1U,
	0x7b108392U, 0x99e41531U, 0x3f1ad944U,
	0xc8138825U, 0xc28949a6U, 0xfaf8876bU,
	0x9f042196U, 0x68b1d623U, 0x8b5114fdU,
	0xdf074c46U, 0x12cc86b3U, 0x0a52098fU,
	0x9d292f9aU, 0xa2f41f12U, 0x43a71ed0U,
	0x73f0bce6U, 0x70a7e980U, 0x243c6d75U,
	0xfdb71513U, 0xa67d8a08U, 0xb7e8f148U,
	0xf7a644eeU, 0x0f1837f2U, 0x4b6694e0U,
	0xb7bbb3a8U
};
#else
static const hsiphash_key_t test_key_hsiphash =
	{{ 0x03020100U, 0x07060504U }};

static const u32 test_vectors_hsiphash[64] = {
	0x5814c896U, 0xe7e864caU, 0xbc4b0e30U,
	0x01539939U, 0x7e059ea6U, 0x88e3d89bU,
	0xa0080b65U, 0x9d38d9d6U, 0x577999b1U,
	0xc839caedU, 0xe4fa32cfU, 0x959246eeU,
	0x6b28096cU, 0x66dd9cd6U, 0x16658a7cU,
	0xd0257b04U, 0x8b31d501U, 0x2b1cd04bU,
	0x06712339U, 0x522aca67U, 0x911bb605U,
	0x90a65f0eU, 0xf826ef7bU, 0x62512debU,
	0x57150ad7U, 0x5d473507U, 0x1ec47442U,
	0xab64afd3U, 0x0a4100d0U, 0x6d2ce652U,
	0x2331b6a3U, 0x08d8791aU, 0xbc6dda8dU,
	0xe0f6c934U, 0xb0652033U, 0x9b9851ccU,
	0x7c46fb7fU, 0x732ba8cbU, 0xf142997aU,
	0xfcc9aa1bU, 0x05327eb2U, 0xe110131cU,
	0xf9e5e7c0U, 0xa7d708a6U, 0x11795ab1U,
	0x65671619U, 0x9f5fff91U, 0xd89c5267U,
	0x007783ebU, 0x95766243U, 0xab639262U,
	0x9c7e1390U, 0xc368dda6U, 0x38ddc455U,
	0xfa13d379U, 0x979ea4e8U, 0x53ecd77eU,
	0x2ee80657U, 0x33dbb66aU, 0xae3f0577U,
	0x88b4c4ccU, 0x3e7f480bU, 0x74c1ebf8U,
	0x87178304U
};
#endif

static int __init siphash_test_init(void)
static int __init siphash_test_init(void)
{
{
	u8 in[64] __aligned(SIPHASH_ALIGNMENT);
	u8 in[64] __aligned(SIPHASH_ALIGNMENT);
@@ -70,6 +130,16 @@ static int __init siphash_test_init(void)
			pr_info("siphash self-test unaligned %u: FAIL\n", i + 1);
			pr_info("siphash self-test unaligned %u: FAIL\n", i + 1);
			ret = -EINVAL;
			ret = -EINVAL;
		}
		}
		if (hsiphash(in, i, &test_key_hsiphash) !=
						test_vectors_hsiphash[i]) {
			pr_info("hsiphash self-test aligned %u: FAIL\n", i + 1);
			ret = -EINVAL;
		}
		if (hsiphash(in_unaligned + 1, i, &test_key_hsiphash) !=
						test_vectors_hsiphash[i]) {
			pr_info("hsiphash self-test unaligned %u: FAIL\n", i + 1);
			ret = -EINVAL;
		}
	}
	}
	if (siphash_1u64(0x0706050403020100ULL, &test_key_siphash) !=
	if (siphash_1u64(0x0706050403020100ULL, &test_key_siphash) !=
						test_vectors_siphash[8]) {
						test_vectors_siphash[8]) {
@@ -115,6 +185,28 @@ static int __init siphash_test_init(void)
		pr_info("siphash self-test 4u32: FAIL\n");
		pr_info("siphash self-test 4u32: FAIL\n");
		ret = -EINVAL;
		ret = -EINVAL;
	}
	}
	if (hsiphash_1u32(0x03020100U, &test_key_hsiphash) !=
						test_vectors_hsiphash[4]) {
		pr_info("hsiphash self-test 1u32: FAIL\n");
		ret = -EINVAL;
	}
	if (hsiphash_2u32(0x03020100U, 0x07060504U, &test_key_hsiphash) !=
						test_vectors_hsiphash[8]) {
		pr_info("hsiphash self-test 2u32: FAIL\n");
		ret = -EINVAL;
	}
	if (hsiphash_3u32(0x03020100U, 0x07060504U,
			  0x0b0a0908U, &test_key_hsiphash) !=
						test_vectors_hsiphash[12]) {
		pr_info("hsiphash self-test 3u32: FAIL\n");
		ret = -EINVAL;
	}
	if (hsiphash_4u32(0x03020100U, 0x07060504U,
			  0x0b0a0908U, 0x0f0e0d0cU, &test_key_hsiphash) !=
						test_vectors_hsiphash[16]) {
		pr_info("hsiphash self-test 4u32: FAIL\n");
		ret = -EINVAL;
	}
	if (!ret)
	if (!ret)
		pr_info("self-tests: pass\n");
		pr_info("self-tests: pass\n");
	return ret;
	return ret;