Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 4c1fba44 authored by Anton Vorontsov's avatar Anton Vorontsov Committed by Kumar Gala
Browse files

spi_mpc8xxx: Add support for QE DMA mode and CPM1/CPM2 chips



This patch adds QE buffer descriptors mode support for the
spi_mpc8xxx driver, and as a side effect we now support CPM1
and CPM2 SPI controllers.

That means that today we support almost all MPC SPI controllers:

- MPC834x-style controllers (support PIO mode only);
- CPM1 and CPM2 controllers (support DMA mode only);
- QE SPI controllers in CPU mode (PIO mode with shift quirks);
- QE SPI controllers in buffer descriptors (DMA) mode;

The only controller we don't currently support is a newer eSPI
(with a dedicated chip selects and a bit different registers map).

Signed-off-by: default avatarAnton Vorontsov <avorontsov@ru.mvista.com>
Acked-by: default avatarDavid Brownell <dbrownell@users.sourceforge.net>
Signed-off-by: default avatarKumar Gala <galak@kernel.crashing.org>
parent 87ec0e98
Loading
Loading
Loading
Loading
+0 −3
Original line number Diff line number Diff line
@@ -147,9 +147,6 @@ config SPI_MPC8xxx
	  This enables using the Freescale MPC8xxx SPI controllers in master
	  mode.

	  This driver uses a simple set of shift registers for data (opposed
	  to the CPM based descriptor model).

config SPI_OMAP_UWIRE
	tristate "OMAP1 MicroWire"
	depends on ARCH_OMAP1
+500 −40
Original line number Diff line number Diff line
@@ -5,6 +5,10 @@
 *
 * Copyright (C) 2006 Polycom, Inc.
 *
 * CPM SPI and QE buffer descriptors mode support:
 * Copyright (c) 2009  MontaVista Software, Inc.
 * Author: Anton Vorontsov <avorontsov@ru.mvista.com>
 *
 * This program is free software; you can redistribute  it and/or modify it
 * under  the terms of  the GNU General  Public License as published by the
 * Free Software Foundation;  either version 2 of the  License, or (at your
@@ -27,6 +31,9 @@
#include <linux/spi/spi_bitbang.h>
#include <linux/platform_device.h>
#include <linux/fsl_devices.h>
#include <linux/dma-mapping.h>
#include <linux/mm.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/gpio.h>
@@ -34,8 +41,19 @@
#include <linux/of_spi.h>

#include <sysdev/fsl_soc.h>
#include <asm/cpm.h>
#include <asm/qe.h>
#include <asm/irq.h>

/* CPM1 and CPM2 are mutually exclusive. */
#ifdef CONFIG_CPM1
#include <asm/cpm1.h>
#define CPM_SPI_CMD mk_cr_cmd(CPM_CR_CH_SPI, 0)
#else
#include <asm/cpm2.h>
#define CPM_SPI_CMD mk_cr_cmd(CPM_CR_SPI_PAGE, CPM_CR_SPI_SBLOCK, 0, 0)
#endif

/* SPI Controller registers */
struct mpc8xxx_spi_reg {
	u8 res1[0x20];
@@ -47,6 +65,28 @@ struct mpc8xxx_spi_reg {
	__be32 receive;
};

/* SPI Parameter RAM */
struct spi_pram {
	__be16	rbase;	/* Rx Buffer descriptor base address */
	__be16	tbase;	/* Tx Buffer descriptor base address */
	u8	rfcr;	/* Rx function code */
	u8	tfcr;	/* Tx function code */
	__be16	mrblr;	/* Max receive buffer length */
	__be32	rstate;	/* Internal */
	__be32	rdp;	/* Internal */
	__be16	rbptr;	/* Internal */
	__be16	rbc;	/* Internal */
	__be32	rxtmp;	/* Internal */
	__be32	tstate;	/* Internal */
	__be32	tdp;	/* Internal */
	__be16	tbptr;	/* Internal */
	__be16	tbc;	/* Internal */
	__be32	txtmp;	/* Internal */
	__be32	res;	/* Tx temp. */
	__be16  rpbase;	/* Relocation pointer (CPM1 only) */
	__be16	res1;	/* Reserved */
};

/* SPI Controller mode register definitions */
#define	SPMODE_LOOP		(1 << 30)
#define	SPMODE_CI_INACTIVEHIGH	(1 << 29)
@@ -75,14 +115,40 @@ struct mpc8xxx_spi_reg {
#define	SPIM_NE		0x00000200	/* Not empty */
#define	SPIM_NF		0x00000100	/* Not full */

#define	SPIE_TXB	0x00000200	/* Last char is written to tx fifo */
#define	SPIE_RXB	0x00000100	/* Last char is written to rx buf */

/* SPCOM register values */
#define	SPCOM_STR	(1 << 23)	/* Start transmit */

#define	SPI_PRAM_SIZE	0x100
#define	SPI_MRBLR	((unsigned int)PAGE_SIZE)

/* SPI Controller driver's private data. */
struct mpc8xxx_spi {
	struct device *dev;
	struct mpc8xxx_spi_reg __iomem *base;

	/* rx & tx bufs from the spi_transfer */
	const void *tx;
	void *rx;

	int subblock;
	struct spi_pram __iomem *pram;
	struct cpm_buf_desc __iomem *tx_bd;
	struct cpm_buf_desc __iomem *rx_bd;

	struct spi_transfer *xfer_in_progress;

	/* dma addresses for CPM transfers */
	dma_addr_t tx_dma;
	dma_addr_t rx_dma;
	bool map_tx_dma;
	bool map_rx_dma;

	dma_addr_t dma_dummy_tx;
	dma_addr_t dma_dummy_rx;

	/* functions to deal with different sized buffers */
	void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
	u32(*get_tx) (struct mpc8xxx_spi *);
@@ -98,6 +164,10 @@ struct mpc8xxx_spi {

	unsigned int flags;
#define SPI_QE_CPU_MODE		(1 << 0) /* QE CPU ("PIO") mode */
#define SPI_CPM_MODE		(1 << 1) /* CPM/QE ("DMA") mode */
#define SPI_CPM1		(1 << 2) /* SPI unit is in CPM1 block */
#define SPI_CPM2		(1 << 3) /* SPI unit is in CPM2 block */
#define SPI_QE			(1 << 4) /* SPI unit is in QE block */

	struct workqueue_struct *workqueue;
	struct work_struct work;
@@ -108,6 +178,10 @@ struct mpc8xxx_spi {
	struct completion done;
};

static void *mpc8xxx_dummy_rx;
static DEFINE_MUTEX(mpc8xxx_dummy_rx_lock);
static int mpc8xxx_dummy_rx_refcnt;

struct spi_mpc8xxx_cs {
	/* functions to deal with different sized buffers */
	void (*get_rx) (u32 rx_data, struct mpc8xxx_spi *);
@@ -173,6 +247,22 @@ static void mpc8xxx_spi_change_mode(struct spi_device *spi)
	mpc8xxx_spi_write_reg(mode, cs->hw_mode & ~SPMODE_ENABLE);
	mpc8xxx_spi_write_reg(mode, cs->hw_mode);

	/* When in CPM mode, we need to reinit tx and rx. */
	if (mspi->flags & SPI_CPM_MODE) {
		if (mspi->flags & SPI_QE) {
			qe_issue_cmd(QE_INIT_TX_RX, mspi->subblock,
				     QE_CR_PROTOCOL_UNSPECIFIED, 0);
		} else {
			cpm_command(CPM_SPI_CMD, CPM_CR_INIT_TRX);
			if (mspi->flags & SPI_CPM1) {
				out_be16(&mspi->pram->rbptr,
					 in_be16(&mspi->pram->rbase));
				out_be16(&mspi->pram->tbptr,
					 in_be16(&mspi->pram->tbase));
			}
		}
	}

	local_irq_restore(flags);
}

@@ -298,19 +388,133 @@ int mpc8xxx_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
	return 0;
}

static int mpc8xxx_spi_bufs(struct spi_device *spi, struct spi_transfer *t)
static void mpc8xxx_spi_cpm_bufs_start(struct mpc8xxx_spi *mspi)
{
	struct mpc8xxx_spi *mpc8xxx_spi;
	u32 word, len, bits_per_word;
	struct cpm_buf_desc __iomem *tx_bd = mspi->tx_bd;
	struct cpm_buf_desc __iomem *rx_bd = mspi->rx_bd;
	unsigned int xfer_len = min(mspi->count, SPI_MRBLR);
	unsigned int xfer_ofs;

	mpc8xxx_spi = spi_master_get_devdata(spi->master);
	xfer_ofs = mspi->xfer_in_progress->len - mspi->count;

	out_be32(&rx_bd->cbd_bufaddr, mspi->rx_dma + xfer_ofs);
	out_be16(&rx_bd->cbd_datlen, 0);
	out_be16(&rx_bd->cbd_sc, BD_SC_EMPTY | BD_SC_INTRPT | BD_SC_WRAP);

	out_be32(&tx_bd->cbd_bufaddr, mspi->tx_dma + xfer_ofs);
	out_be16(&tx_bd->cbd_datlen, xfer_len);
	out_be16(&tx_bd->cbd_sc, BD_SC_READY | BD_SC_INTRPT | BD_SC_WRAP |
				 BD_SC_LAST);

	/* start transfer */
	mpc8xxx_spi_write_reg(&mspi->base->command, SPCOM_STR);
}

static int mpc8xxx_spi_cpm_bufs(struct mpc8xxx_spi *mspi,
				struct spi_transfer *t, bool is_dma_mapped)
{
	struct device *dev = mspi->dev;

	if (is_dma_mapped) {
		mspi->map_tx_dma = 0;
		mspi->map_rx_dma = 0;
	} else {
		mspi->map_tx_dma = 1;
		mspi->map_rx_dma = 1;
	}

	if (!t->tx_buf) {
		mspi->tx_dma = mspi->dma_dummy_tx;
		mspi->map_tx_dma = 0;
	}

	if (!t->rx_buf) {
		mspi->rx_dma = mspi->dma_dummy_rx;
		mspi->map_rx_dma = 0;
	}

	if (mspi->map_tx_dma) {
		void *nonconst_tx = (void *)mspi->tx; /* shut up gcc */

		mspi->tx_dma = dma_map_single(dev, nonconst_tx, t->len,
					      DMA_TO_DEVICE);
		if (dma_mapping_error(dev, mspi->tx_dma)) {
			dev_err(dev, "unable to map tx dma\n");
			return -ENOMEM;
		}
	} else {
		mspi->tx_dma = t->tx_dma;
	}

	if (mspi->map_rx_dma) {
		mspi->rx_dma = dma_map_single(dev, mspi->rx, t->len,
					      DMA_FROM_DEVICE);
		if (dma_mapping_error(dev, mspi->rx_dma)) {
			dev_err(dev, "unable to map rx dma\n");
			goto err_rx_dma;
		}
	} else {
		mspi->rx_dma = t->rx_dma;
	}

	/* enable rx ints */
	mpc8xxx_spi_write_reg(&mspi->base->mask, SPIE_RXB);

	mspi->xfer_in_progress = t;
	mspi->count = t->len;

	/* start CPM transfers */
	mpc8xxx_spi_cpm_bufs_start(mspi);

	return 0;

err_rx_dma:
	if (mspi->map_tx_dma)
		dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
	return -ENOMEM;
}

static void mpc8xxx_spi_cpm_bufs_complete(struct mpc8xxx_spi *mspi)
{
	struct device *dev = mspi->dev;
	struct spi_transfer *t = mspi->xfer_in_progress;

	if (mspi->map_tx_dma)
		dma_unmap_single(dev, mspi->tx_dma, t->len, DMA_TO_DEVICE);
	if (mspi->map_tx_dma)
		dma_unmap_single(dev, mspi->rx_dma, t->len, DMA_FROM_DEVICE);
	mspi->xfer_in_progress = NULL;
}

static int mpc8xxx_spi_cpu_bufs(struct mpc8xxx_spi *mspi,
				struct spi_transfer *t, unsigned int len)
{
	u32 word;

	mspi->count = len;

	/* enable rx ints */
	mpc8xxx_spi_write_reg(&mspi->base->mask, SPIM_NE);

	/* transmit word */
	word = mspi->get_tx(mspi);
	mpc8xxx_spi_write_reg(&mspi->base->transmit, word);

	return 0;
}

static int mpc8xxx_spi_bufs(struct spi_device *spi, struct spi_transfer *t,
			    bool is_dma_mapped)
{
	struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
	unsigned int len = t->len;
	u8 bits_per_word;
	int ret;

	mpc8xxx_spi->tx = t->tx_buf;
	mpc8xxx_spi->rx = t->rx_buf;
	bits_per_word = spi->bits_per_word;
	if (t->bits_per_word)
		bits_per_word = t->bits_per_word;
	len = t->len;

	if (bits_per_word > 8) {
		/* invalid length? */
		if (len & 1)
@@ -323,22 +527,27 @@ static int mpc8xxx_spi_bufs(struct spi_device *spi, struct spi_transfer *t)
			return -EINVAL;
		len /= 2;
	}
	mpc8xxx_spi->count = len;

	INIT_COMPLETION(mpc8xxx_spi->done);
	mpc8xxx_spi->tx = t->tx_buf;
	mpc8xxx_spi->rx = t->rx_buf;

	/* enable rx ints */
	mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, SPIM_NE);
	INIT_COMPLETION(mpc8xxx_spi->done);

	/* transmit word */
	word = mpc8xxx_spi->get_tx(mpc8xxx_spi);
	mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->transmit, word);
	if (mpc8xxx_spi->flags & SPI_CPM_MODE)
		ret = mpc8xxx_spi_cpm_bufs(mpc8xxx_spi, t, is_dma_mapped);
	else
		ret = mpc8xxx_spi_cpu_bufs(mpc8xxx_spi, t, len);
	if (ret)
		return ret;

	wait_for_completion(&mpc8xxx_spi->done);

	/* disable rx ints */
	mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->mask, 0);

	if (mpc8xxx_spi->flags & SPI_CPM_MODE)
		mpc8xxx_spi_cpm_bufs_complete(mpc8xxx_spi);

	return mpc8xxx_spi->count;
}

@@ -369,7 +578,7 @@ static void mpc8xxx_spi_do_one_msg(struct spi_message *m)
		}
		cs_change = t->cs_change;
		if (t->len)
			status = mpc8xxx_spi_bufs(spi, t);
			status = mpc8xxx_spi_bufs(spi, t, m->is_dma_mapped);
		if (status) {
			status = -EMSGSIZE;
			break;
@@ -458,45 +667,80 @@ static int mpc8xxx_spi_setup(struct spi_device *spi)
	return 0;
}

static irqreturn_t mpc8xxx_spi_irq(s32 irq, void *context_data)
static void mpc8xxx_spi_cpm_irq(struct mpc8xxx_spi *mspi, u32 events)
{
	struct mpc8xxx_spi *mpc8xxx_spi = context_data;
	u32 event;
	irqreturn_t ret = IRQ_NONE;
	u16 len;

	/* Get interrupt events(tx/rx) */
	event = mpc8xxx_spi_read_reg(&mpc8xxx_spi->base->event);
	dev_dbg(mspi->dev, "%s: bd datlen %d, count %d\n", __func__,
		in_be16(&mspi->rx_bd->cbd_datlen), mspi->count);

	/* We need handle RX first */
	if (event & SPIE_NE) {
		u32 rx_data = mpc8xxx_spi_read_reg(&mpc8xxx_spi->base->receive);
	len = in_be16(&mspi->rx_bd->cbd_datlen);
	if (len > mspi->count) {
		WARN_ON(1);
		len = mspi->count;
	}

		if (mpc8xxx_spi->rx)
			mpc8xxx_spi->get_rx(rx_data, mpc8xxx_spi);
	/* Clear the events */
	mpc8xxx_spi_write_reg(&mspi->base->event, events);

		ret = IRQ_HANDLED;
	mspi->count -= len;
	if (mspi->count)
		mpc8xxx_spi_cpm_bufs_start(mspi);
	else
		complete(&mspi->done);
}

	if ((event & SPIE_NF) == 0)
static void mpc8xxx_spi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
{
	/* We need handle RX first */
	if (events & SPIE_NE) {
		u32 rx_data = mpc8xxx_spi_read_reg(&mspi->base->receive);

		if (mspi->rx)
			mspi->get_rx(rx_data, mspi);
	}

	if ((events & SPIE_NF) == 0)
		/* spin until TX is done */
		while (((event =
			 mpc8xxx_spi_read_reg(&mpc8xxx_spi->base->event)) &
		while (((events =
			mpc8xxx_spi_read_reg(&mspi->base->event)) &
						SPIE_NF) == 0)
			cpu_relax();

	mpc8xxx_spi->count -= 1;
	if (mpc8xxx_spi->count) {
		u32 word = mpc8xxx_spi->get_tx(mpc8xxx_spi);
		mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->transmit, word);
	/* Clear the events */
	mpc8xxx_spi_write_reg(&mspi->base->event, events);

	mspi->count -= 1;
	if (mspi->count) {
		u32 word = mspi->get_tx(mspi);

		mpc8xxx_spi_write_reg(&mspi->base->transmit, word);
	} else {
		complete(&mpc8xxx_spi->done);
		complete(&mspi->done);
	}
}

	/* Clear the events */
	mpc8xxx_spi_write_reg(&mpc8xxx_spi->base->event, event);
static irqreturn_t mpc8xxx_spi_irq(s32 irq, void *context_data)
{
	struct mpc8xxx_spi *mspi = context_data;
	irqreturn_t ret = IRQ_NONE;
	u32 events;

	/* Get interrupt events(tx/rx) */
	events = mpc8xxx_spi_read_reg(&mspi->base->event);
	if (events)
		ret = IRQ_HANDLED;

	dev_dbg(mspi->dev, "%s: events %x\n", __func__, events);

	if (mspi->flags & SPI_CPM_MODE)
		mpc8xxx_spi_cpm_irq(mspi, events);
	else
		mpc8xxx_spi_cpu_irq(mspi, events);

	return ret;
}

static int mpc8xxx_spi_transfer(struct spi_device *spi,
				struct spi_message *m)
{
@@ -520,10 +764,212 @@ static void mpc8xxx_spi_cleanup(struct spi_device *spi)
	kfree(spi->controller_state);
}

static void *mpc8xxx_spi_alloc_dummy_rx(void)
{
	mutex_lock(&mpc8xxx_dummy_rx_lock);

	if (!mpc8xxx_dummy_rx)
		mpc8xxx_dummy_rx = kmalloc(SPI_MRBLR, GFP_KERNEL);
	if (mpc8xxx_dummy_rx)
		mpc8xxx_dummy_rx_refcnt++;

	mutex_unlock(&mpc8xxx_dummy_rx_lock);

	return mpc8xxx_dummy_rx;
}

static void mpc8xxx_spi_free_dummy_rx(void)
{
	mutex_lock(&mpc8xxx_dummy_rx_lock);

	switch (mpc8xxx_dummy_rx_refcnt) {
	case 0:
		WARN_ON(1);
		break;
	case 1:
		kfree(mpc8xxx_dummy_rx);
		mpc8xxx_dummy_rx = NULL;
		/* fall through */
	default:
		mpc8xxx_dummy_rx_refcnt--;
		break;
	}

	mutex_unlock(&mpc8xxx_dummy_rx_lock);
}

static unsigned long mpc8xxx_spi_cpm_get_pram(struct mpc8xxx_spi *mspi)
{
	struct device *dev = mspi->dev;
	struct device_node *np = dev_archdata_get_node(&dev->archdata);
	const u32 *iprop;
	int size;
	unsigned long spi_base_ofs;
	unsigned long pram_ofs = -ENOMEM;

	/* Can't use of_address_to_resource(), QE muram isn't at 0. */
	iprop = of_get_property(np, "reg", &size);

	/* QE with a fixed pram location? */
	if (mspi->flags & SPI_QE && iprop && size == sizeof(*iprop) * 4)
		return cpm_muram_alloc_fixed(iprop[2], SPI_PRAM_SIZE);

	/* QE but with a dynamic pram location? */
	if (mspi->flags & SPI_QE) {
		pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
		qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, mspi->subblock,
				QE_CR_PROTOCOL_UNSPECIFIED, pram_ofs);
		return pram_ofs;
	}

	/* CPM1 and CPM2 pram must be at a fixed addr. */
	if (!iprop || size != sizeof(*iprop) * 4)
		return -ENOMEM;

	spi_base_ofs = cpm_muram_alloc_fixed(iprop[2], 2);
	if (IS_ERR_VALUE(spi_base_ofs))
		return -ENOMEM;

	if (mspi->flags & SPI_CPM2) {
		pram_ofs = cpm_muram_alloc(SPI_PRAM_SIZE, 64);
		if (!IS_ERR_VALUE(pram_ofs)) {
			u16 __iomem *spi_base = cpm_muram_addr(spi_base_ofs);

			out_be16(spi_base, pram_ofs);
		}
	} else {
		struct spi_pram __iomem *pram = cpm_muram_addr(spi_base_ofs);
		u16 rpbase = in_be16(&pram->rpbase);

		/* Microcode relocation patch applied? */
		if (rpbase)
			pram_ofs = rpbase;
		else
			return spi_base_ofs;
	}

	cpm_muram_free(spi_base_ofs);
	return pram_ofs;
}

static int mpc8xxx_spi_cpm_init(struct mpc8xxx_spi *mspi)
{
	struct device *dev = mspi->dev;
	struct device_node *np = dev_archdata_get_node(&dev->archdata);
	const u32 *iprop;
	int size;
	unsigned long pram_ofs;
	unsigned long bds_ofs;

	if (!(mspi->flags & SPI_CPM_MODE))
		return 0;

	if (!mpc8xxx_spi_alloc_dummy_rx())
		return -ENOMEM;

	if (mspi->flags & SPI_QE) {
		iprop = of_get_property(np, "cell-index", &size);
		if (iprop && size == sizeof(*iprop))
			mspi->subblock = *iprop;

		switch (mspi->subblock) {
		default:
			dev_warn(dev, "cell-index unspecified, assuming SPI1");
			/* fall through */
		case 0:
			mspi->subblock = QE_CR_SUBBLOCK_SPI1;
			break;
		case 1:
			mspi->subblock = QE_CR_SUBBLOCK_SPI2;
			break;
		}
	}

	pram_ofs = mpc8xxx_spi_cpm_get_pram(mspi);
	if (IS_ERR_VALUE(pram_ofs)) {
		dev_err(dev, "can't allocate spi parameter ram\n");
		goto err_pram;
	}

	bds_ofs = cpm_muram_alloc(sizeof(*mspi->tx_bd) +
				  sizeof(*mspi->rx_bd), 8);
	if (IS_ERR_VALUE(bds_ofs)) {
		dev_err(dev, "can't allocate bds\n");
		goto err_bds;
	}

	mspi->dma_dummy_tx = dma_map_single(dev, empty_zero_page, PAGE_SIZE,
					    DMA_TO_DEVICE);
	if (dma_mapping_error(dev, mspi->dma_dummy_tx)) {
		dev_err(dev, "unable to map dummy tx buffer\n");
		goto err_dummy_tx;
	}

	mspi->dma_dummy_rx = dma_map_single(dev, mpc8xxx_dummy_rx, SPI_MRBLR,
					    DMA_FROM_DEVICE);
	if (dma_mapping_error(dev, mspi->dma_dummy_rx)) {
		dev_err(dev, "unable to map dummy rx buffer\n");
		goto err_dummy_rx;
	}

	mspi->pram = cpm_muram_addr(pram_ofs);

	mspi->tx_bd = cpm_muram_addr(bds_ofs);
	mspi->rx_bd = cpm_muram_addr(bds_ofs + sizeof(*mspi->tx_bd));

	/* Initialize parameter ram. */
	out_be16(&mspi->pram->tbase, cpm_muram_offset(mspi->tx_bd));
	out_be16(&mspi->pram->rbase, cpm_muram_offset(mspi->rx_bd));
	out_8(&mspi->pram->tfcr, CPMFCR_EB | CPMFCR_GBL);
	out_8(&mspi->pram->rfcr, CPMFCR_EB | CPMFCR_GBL);
	out_be16(&mspi->pram->mrblr, SPI_MRBLR);
	out_be32(&mspi->pram->rstate, 0);
	out_be32(&mspi->pram->rdp, 0);
	out_be16(&mspi->pram->rbptr, 0);
	out_be16(&mspi->pram->rbc, 0);
	out_be32(&mspi->pram->rxtmp, 0);
	out_be32(&mspi->pram->tstate, 0);
	out_be32(&mspi->pram->tdp, 0);
	out_be16(&mspi->pram->tbptr, 0);
	out_be16(&mspi->pram->tbc, 0);
	out_be32(&mspi->pram->txtmp, 0);

	return 0;

err_dummy_rx:
	dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
err_dummy_tx:
	cpm_muram_free(bds_ofs);
err_bds:
	cpm_muram_free(pram_ofs);
err_pram:
	mpc8xxx_spi_free_dummy_rx();
	return -ENOMEM;
}

static void mpc8xxx_spi_cpm_free(struct mpc8xxx_spi *mspi)
{
	struct device *dev = mspi->dev;

	dma_unmap_single(dev, mspi->dma_dummy_rx, SPI_MRBLR, DMA_FROM_DEVICE);
	dma_unmap_single(dev, mspi->dma_dummy_tx, PAGE_SIZE, DMA_TO_DEVICE);
	cpm_muram_free(cpm_muram_offset(mspi->tx_bd));
	cpm_muram_free(cpm_muram_offset(mspi->pram));
	mpc8xxx_spi_free_dummy_rx();
}

static const char *mpc8xxx_spi_strmode(unsigned int flags)
{
	if (flags & SPI_QE_CPU_MODE)
	if (flags & SPI_QE_CPU_MODE) {
		return "QE CPU";
	} else if (flags & SPI_CPM_MODE) {
		if (flags & SPI_QE)
			return "QE";
		else if (flags & SPI_CPM2)
			return "CPM2";
		else
			return "CPM1";
	}
	return "CPU";
}

@@ -553,11 +999,16 @@ mpc8xxx_spi_probe(struct device *dev, struct resource *mem, unsigned int irq)
	master->cleanup = mpc8xxx_spi_cleanup;

	mpc8xxx_spi = spi_master_get_devdata(master);
	mpc8xxx_spi->dev = dev;
	mpc8xxx_spi->get_rx = mpc8xxx_spi_rx_buf_u8;
	mpc8xxx_spi->get_tx = mpc8xxx_spi_tx_buf_u8;
	mpc8xxx_spi->flags = pdata->flags;
	mpc8xxx_spi->spibrg = pdata->sysclk;

	ret = mpc8xxx_spi_cpm_init(mpc8xxx_spi);
	if (ret)
		goto err_cpm_init;

	mpc8xxx_spi->rx_shift = 0;
	mpc8xxx_spi->tx_shift = 0;
	if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
@@ -570,7 +1021,7 @@ mpc8xxx_spi_probe(struct device *dev, struct resource *mem, unsigned int irq)
	mpc8xxx_spi->base = ioremap(mem->start, mem->end - mem->start + 1);
	if (mpc8xxx_spi->base == NULL) {
		ret = -ENOMEM;
		goto put_master;
		goto err_ioremap;
	}

	mpc8xxx_spi->irq = irq;
@@ -624,7 +1075,9 @@ mpc8xxx_spi_probe(struct device *dev, struct resource *mem, unsigned int irq)
	free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
unmap_io:
	iounmap(mpc8xxx_spi->base);
put_master:
err_ioremap:
	mpc8xxx_spi_cpm_free(mpc8xxx_spi);
err_cpm_init:
	spi_master_put(master);
err:
	return ERR_PTR(ret);
@@ -644,6 +1097,7 @@ static int __devexit mpc8xxx_spi_remove(struct device *dev)

	free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
	iounmap(mpc8xxx_spi->base);
	mpc8xxx_spi_cpm_free(mpc8xxx_spi);

	return 0;
}
@@ -806,6 +1260,12 @@ static int __devinit of_mpc8xxx_spi_probe(struct of_device *ofdev,
	prop = of_get_property(np, "mode", NULL);
	if (prop && !strcmp(prop, "cpu-qe"))
		pdata->flags = SPI_QE_CPU_MODE;
	else if (prop && !strcmp(prop, "qe"))
		pdata->flags = SPI_CPM_MODE | SPI_QE;
	else if (of_device_is_compatible(np, "fsl,cpm2-spi"))
		pdata->flags = SPI_CPM_MODE | SPI_CPM2;
	else if (of_device_is_compatible(np, "fsl,cpm1-spi"))
		pdata->flags = SPI_CPM_MODE | SPI_CPM1;

	ret = of_mpc8xxx_spi_get_chipselects(dev);
	if (ret)