Donate to e Foundation | Murena handsets with /e/OS | Own a part of Murena! Learn more

Commit 1fa25e41 authored by Luis R. Rodriguez's avatar Luis R. Rodriguez Committed by John W. Linville
Browse files

cfg80211: add wiphy_apply_custom_regulatory()



This adds wiphy_apply_custom_regulatory() to be used by drivers
prior to wiphy registration to apply a custom regulatory domain.
This can be used by drivers that do not have a direct 1-1 mapping
between a regulatory domain and a country.

Signed-off-by: default avatarLuis R. Rodriguez <lrodriguez@atheros.com>
Signed-off-by: default avatarJohn W. Linville <linville@tuxdriver.com>
parent 078e1e60
Loading
Loading
Loading
Loading
+17 −0
Original line number Diff line number Diff line
@@ -401,4 +401,21 @@ extern void regulatory_hint(struct wiphy *wiphy, const char *alpha2);
extern void regulatory_hint_11d(struct wiphy *wiphy,
				u8 *country_ie,
				u8 country_ie_len);

/**
 * wiphy_apply_custom_regulatory - apply a custom driver regulatory domain
 * @wiphy: the wireless device we want to process the regulatory domain on
 * @regd: the custom regulatory domain to use for this wiphy
 *
 * Drivers can sometimes have custom regulatory domains which do not apply
 * to a specific country. Drivers can use this to apply such custom regulatory
 * domains. This routine must be called prior to wiphy registration. The
 * custom regulatory domain will be trusted completely and as such previous
 * default channel settings will be disregarded. If no rule is found for a
 * channel on the regulatory domain the channel will be disabled.
 */
extern void wiphy_apply_custom_regulatory(
	struct wiphy *wiphy,
	const struct ieee80211_regdomain *regd);

#endif /* __NET_WIRELESS_H */
+91 −24
Original line number Diff line number Diff line
@@ -782,36 +782,18 @@ static u32 map_regdom_flags(u32 rd_flags)
	return channel_flags;
}

/**
 * freq_reg_info - get regulatory information for the given frequency
 * @wiphy: the wiphy for which we want to process this rule for
 * @center_freq: Frequency in KHz for which we want regulatory information for
 * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
 * 	you can set this to 0. If this frequency is allowed we then set
 * 	this value to the maximum allowed bandwidth.
 * @reg_rule: the regulatory rule which we have for this frequency
 *
 * Use this function to get the regulatory rule for a specific frequency on
 * a given wireless device. If the device has a specific regulatory domain
 * it wants to follow we respect that unless a country IE has been received
 * and processed already.
 *
 * Returns 0 if it was able to find a valid regulatory rule which does
 * apply to the given center_freq otherwise it returns non-zero. It will
 * also return -ERANGE if we determine the given center_freq does not even have
 * a regulatory rule for a frequency range in the center_freq's band. See
 * freq_in_rule_band() for our current definition of a band -- this is purely
 * subjective and right now its 802.11 specific.
 */
static int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
			 const struct ieee80211_reg_rule **reg_rule)
static int freq_reg_info_regd(struct wiphy *wiphy,
			      u32 center_freq,
			      u32 *bandwidth,
			      const struct ieee80211_reg_rule **reg_rule,
			      const struct ieee80211_regdomain *custom_regd)
{
	int i;
	bool band_rule_found = false;
	const struct ieee80211_regdomain *regd;
	u32 max_bandwidth = 0;

	regd = cfg80211_regdomain;
	regd = custom_regd ? custom_regd : cfg80211_regdomain;

	/* Follow the driver's regulatory domain, if present, unless a country
	 * IE has been processed */
@@ -852,6 +834,34 @@ static int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
	return !max_bandwidth;
}

/**
 * freq_reg_info - get regulatory information for the given frequency
 * @wiphy: the wiphy for which we want to process this rule for
 * @center_freq: Frequency in KHz for which we want regulatory information for
 * @bandwidth: the bandwidth requirement you have in KHz, if you do not have one
 * 	you can set this to 0. If this frequency is allowed we then set
 * 	this value to the maximum allowed bandwidth.
 * @reg_rule: the regulatory rule which we have for this frequency
 *
 * Use this function to get the regulatory rule for a specific frequency on
 * a given wireless device. If the device has a specific regulatory domain
 * it wants to follow we respect that unless a country IE has been received
 * and processed already.
 *
 * Returns 0 if it was able to find a valid regulatory rule which does
 * apply to the given center_freq otherwise it returns non-zero. It will
 * also return -ERANGE if we determine the given center_freq does not even have
 * a regulatory rule for a frequency range in the center_freq's band. See
 * freq_in_rule_band() for our current definition of a band -- this is purely
 * subjective and right now its 802.11 specific.
 */
static int freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 *bandwidth,
			 const struct ieee80211_reg_rule **reg_rule)
{
	return freq_reg_info_regd(wiphy, center_freq,
		bandwidth, reg_rule, NULL);
}

static void handle_channel(struct wiphy *wiphy, enum ieee80211_band band,
			   unsigned int chan_idx)
{
@@ -962,6 +972,63 @@ void wiphy_update_regulatory(struct wiphy *wiphy, enum reg_set_by setby)
		wiphy->reg_notifier(wiphy, setby);
}

static void handle_channel_custom(struct wiphy *wiphy,
				  enum ieee80211_band band,
				  unsigned int chan_idx,
				  const struct ieee80211_regdomain *regd)
{
	int r;
	u32 max_bandwidth = 0;
	const struct ieee80211_reg_rule *reg_rule = NULL;
	const struct ieee80211_power_rule *power_rule = NULL;
	struct ieee80211_supported_band *sband;
	struct ieee80211_channel *chan;

	sband = wiphy->bands[band];
	BUG_ON(chan_idx >= sband->n_channels);
	chan = &sband->channels[chan_idx];

	r = freq_reg_info_regd(wiphy, MHZ_TO_KHZ(chan->center_freq),
		&max_bandwidth, &reg_rule, regd);

	if (r) {
		chan->flags = IEEE80211_CHAN_DISABLED;
		return;
	}

	power_rule = &reg_rule->power_rule;

	chan->flags |= map_regdom_flags(reg_rule->flags);
	chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
	chan->max_bandwidth = KHZ_TO_MHZ(max_bandwidth);
	chan->max_power = (int) MBM_TO_DBM(power_rule->max_eirp);
}

static void handle_band_custom(struct wiphy *wiphy, enum ieee80211_band band,
			       const struct ieee80211_regdomain *regd)
{
	unsigned int i;
	struct ieee80211_supported_band *sband;

	BUG_ON(!wiphy->bands[band]);
	sband = wiphy->bands[band];

	for (i = 0; i < sband->n_channels; i++)
		handle_channel_custom(wiphy, band, i, regd);
}

/* Used by drivers prior to wiphy registration */
void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
				   const struct ieee80211_regdomain *regd)
{
	enum ieee80211_band band;
	for (band = 0; band < IEEE80211_NUM_BANDS; band++) {
		if (wiphy->bands[band])
			handle_band_custom(wiphy, band, regd);
	}
}
EXPORT_SYMBOL(wiphy_apply_custom_regulatory);

static int reg_copy_regd(const struct ieee80211_regdomain **dst_regd,
			 const struct ieee80211_regdomain *src_regd)
{